5 research outputs found

    Demonstration of <i>Allium sativum</i> Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production

    No full text
    To the best of our knowledge, this is the first study demonstrating the efficiency of Allium sativum hydro-alcoholic extract (ASE) againstFigure growth, biofilm development, and soluble factor production of more than 200 biodeteriogenic microbial strains isolated from cultural heritage objects and buildings. The plant extract composition and antioxidant activities were determined spectrophotometrically and by HPLC–MS. The bioevaluation consisted of the qualitative (adapted diffusion method) and the quantitative evaluation of the inhibitory effect on planktonic growth (microdilution method), biofilm formation (violet crystal microtiter method), and production of microbial enzymes and organic acids. The garlic extract efficiency was correlated with microbial strain taxonomy and isolation source (the fungal strains isolated from paintings and paper and bacteria from wood, paper, and textiles were the most susceptible). The garlic extract contained thiosulfinate (307.66 ± 0.043 µM/g), flavonoids (64.33 ± 7.69 µg QE/g), and polyphenols (0.95 ± 0.011 mg GAE/g) as major compounds and demonstrated the highest efficiency against the Aspergillus versicolor (MIC 3.12–6.25 mg/mL), A. ochraceus (MIC: 3.12 mg/mL), Penicillium expansum (MIC 6.25–12.5 mg/mL), and A. niger (MIC 3.12–50 mg/mL) strains. The extract inhibited the adherence capacity (IIBG% 95.08–44.62%) and the production of cellulase, organic acids, and esterase. This eco-friendly solution shows promising potential for the conservation and safeguarding of tangible cultural heritage, successfully combating the biodeteriogenic microorganisms without undesirable side effects for the natural ecosystems

    Applications for zoosporic parasites in aquatic systems (ParAqua)

    No full text
    Zoosporic parasites (i.e. fungi and fungi-like aquatic microorganisms) constitute important drivers of natural populations, causing severe host mortality. Economic impacts of parasitic diseases are notable in the microalgae biotech industry, affecting production of food ingredients, biofuels, pharma- and nutraceuticals.While scientific research on this topic is gaining traction by increasing studies elucidating the functional role of zoosporic parasites in natural ecosystems, we are currently lacking integrated and interdisciplinary efforts for effectively detecting and controlling parasites in the microalgae industry. To fill this gap we propose to establish an innovative, dynamic European network connecting scientists, industries and stakeholders to optimize information exchange, equalize access to resources and to develop a joint research agenda. ParAqua aims at compiling and making available all information on the occurrence of zoosporic parasites and their relationship with hosts, elucidate drivers and evaluate impacts of parasitism in natural and man-made aquatic environments. We aim to implement new tools for monitoring and prevention of infections, and to create protocols and a Decision Support Tool for detecting and controlling parasites in the microalgae biotech production. Applied knowledge on zoosporic parasites can feed back from industry to ecology, and we therefore will explore whether the developed tools can be applied for monitoring lakes and reservoirs. Short-Term Scientific Missions and Training Schools will be organised specifically for early stage scientists and managers – with a specific focus on ITC – with the aim to share and integrate both scientific and applied expertise and increase exchange between basic and applied researchers and stakeholders
    corecore