145 research outputs found
RESIDENTS’ PREFERENCE FOR A PROPOSED PARKING FACILITY IN DAVAO CITY: A CONJOINT ANALYSIS
The study explored the clients’ preferences for a proposed parking facility in the central business district of Davao City by using the conjoint analysis method to determine the relative performance and the best combination of the parking attributes as preferred by clients, namely: parking structure, accessibility, safety and security, amenities, and parking fees. A quantitative market research design was applied. The analysis of data utilized the IBM SPSS software to identify the order of relative importance of the chosen attributes and the additive model to measure the total utility of a parking facility by calculating the sum of the constant and the utility estimate of each attribute level with the highest value. The results revealed that the respondents in Davao City prefer a parking facility that is automated multi-level parking, equipped with internet-connected intelligent parking and CCTV surveillance systems, a parking facility near to car washing areas and coffee shops, and a parking fee priced at P30.00 for the 1st 3 hours. The findings of the study served as a reference to prospective investors and businessmen who would be interested to know how the market behaves in relation to the attributes necessary in a proposed parking facility to address the parking problems in Davao City, and to achieve a better transportation management system to improve the quality of life of people, the economy, and the environment. Article visualizations
Eating from the wild: an insight into the indigenous wild edible plants consumed by the Digaru Mishmi tribe of Arunachal Pradesh
Anjaw district is situated at the extreme foothill of eastern himalaya of Arunachal Pradesh, distinctive in its nature by having a rich diversity of wild edible plants rich in nutrition as well as medicinal properties. Ethnically, the Digaru Mishmi tribe (inhabitants) of the district adopted the traditional way of consuming these rich ethnobotanical resources to fulfill their daily nutrition & health care. These plants have traditionally occupied an important position in their socio-cultural, spiritual and health aspects of the rural tribal lives. So, the consumption of wild edible plants as a food source has been an integral part of the indigenous people’s culture. To get an insight into the Digaru Mishmi people’s way of lifestyle, the present study was conducted to explore, identify & document the ethno botany of the Digaru Mishmi people and to record their unique knowledge about wild edible plants. Around 57 species were found & all the plants used by the tribe are tabulated inalphabetical order along with botanical name, vernacular name (Digaru Mishmi), family, parts used, food value and ethnomedicinal uses. Wild edible plants form a good source of protein, fat, vitamins, sugar and minerals requirement of the tribal people to a greater extent. Hence, the paper highlights the identification diversity of wild edible plants andits documentation
Efficient Remyelination Requires DNA Methylation
Oligodendrocyte progenitor cells (OPCs) are the principal source of new myelin in the central nervous system. A better understanding of how they mature into myelin-forming cells is of high relevance for remyelination. It has recently been demonstrated that during developmental myelination, the DNA methyltransferase 1 (DNMT1), but not DNMT3A, is critical for regulating proliferation and differentiation of OPCs into myelinating oligodendrocytes (OLs). However, it remains to be determined whether DNA methylation is also critical for the differentiation of adult OPCs during remyelination. After lysolecithin-induced demyelination in the ventrolateral spinal cord white matter of adult mice of either sex, we detected increased levels of DNA methylation and higher expression levels of the DNA methyltransferase DNMT3A and lower levels of DNMT1 in differentiating adult OLs. To functionally assess the role of DNMT1 and DNMT3 in adult OPCs, we used mice with inducible and lineage-specific ablation of and/or (i.e., ). Upon lysolecithin injection in the spinal cord of these transgenic mice, we detected defective OPC differentiation and inefficient remyelination in the null and null mice, but not in the null mice. Taken together with previous results in the developing spinal cord, these data suggest an age-dependent role of distinct DNA methyltransferases in the oligodendrocyte lineage, with a dominant role for DNMT1 in neonatal OPCs and for DNMT3A in adult OPCs.This work was supported by NIH-R37NS42925-14 to P.C., NIH-F31NS077504 Fellowship to J.L.H., postdoctoral fellowships from the Paralyzed Veterans of America (3061) and National Multiple Sclerosis Society (FG-1507-04996) to S.M., a program grant from the UK Multiple Sclerosis Society (R.J.M.F., C.Z.) and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute (R.J.M.F.)
First Results of Fast One-dimensional Hybrid Simulation of EAS Using CONEX
A hybrid simulation code is developed that is suited for fast one-dimensional
simulations of shower profiles, including fluctuations. It combines the Monte
Carlo simulation of high energy interactions with a fast numerical solution of
cascade equations for the resulting distributions of secondary particles.
Results obtained with this new code, called CONEX, are presented and compared
to CORSIKA predictions.Comment: 4 pages, 4 figures, to appear in the proceedings of the XIII
ISVHECRI, Pylos, 200
A computational map of the human-SARS-CoV-2 protein-RNA interactome predicted at single-nucleotide resolution
RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention
Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice.
In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30-50 nm; S-CNHs) and large-sized CNHs (80-100 nm; L-CNHs) were chemically functionalized and radiolabeled with [(111)In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver.journal article20162016 07 22importe
Non-Invasive Exploration of Neonatal Gastric Epithelium by Using Exfoliated Epithelial Cells
Background & Aims: In preterm infants, exfoliated gastric epithelial cells can be retrieved from aspirates sampled through the naso-gastric feeding tube. Our aims were to determine (1) whether the recovery of exfoliated cells is feasible at any time from birth through the removal of the nasogastric tube, (2) whether they can be grown in culture in vitro, and (3) whether the physiological state of exfoliated cells expressing H+/K+-ATPases reflects that of their counterparts remaining in situ at the surface of the gastric epithelium in neonatal rat pups. Methods: In infants, gastric fluid aspirates were collected weekly after birth or every 3 hours over 24-h periods, and related to clinical parameters (Biocollection PROG/09/18). In rat pups submitted to a single fasting/refeeding cycle, we explored circadian exfoliation with the cellular counter-parts in the gland. All samples were analyzed by confocal imaging and Enzyme-Linked Immunosorbent Assay. Results: Epithelial cells were identified by microscopy using membrane-bound anti-H+/K+ ATPases antibody, assessed for nucleus integrity, and the expression of selected proteins (autophagy, circadian clock). On 34 infants, the H+/K+-ATPasepositive cells were consistently found quiescent, regardless of gestational age and feeding schedule from day-5 of life to the day of removal of the naso-gastric tube. By logistic regression analysis, we did find a positive correlation between the intensity of exfoliation (cellular loss per sample) and the postnatal age (p,0.001). The H+/K+ ATPase-positive cell
Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage
Oligodendrocytes derive from progenitors (OPCs) through the interplay of epigenomic and transcriptional events. By integrating high-resolution methylomics, RNA-sequencing, and multiple transgenic lines, this study defines the role of DNMT1 in developmental myelination. We detected hypermethylation of genes related to cell cycle and neurogenesis during differentiation of OPCs, yet genetic ablation of Dnmt1 resulted in inefficient OPC expansion and severe hypomyelination associated with ataxia and tremors in mice. This phenotype was not caused by lineage switch or massive apoptosis but was characterized by a profound defect of differentiation associated with changes in exon-skipping and intron-retention splicing events and by the activation of an endoplasmic reticulum stress response. Therefore, loss of Dnmt1 in OPCs is not sufficient to induce a lineage switch but acts as an important determinant of the coordination between RNA splicing and protein synthesis necessary for myelin formation.This work was supported by NIH-NINDS grants R37NS042925 and NS-R0152738 (P.C.) and F31NS077504 (J.L.H.), the UK Multiple Sclerosis Society (R.J.M.F.), and NIH-NIMH grant R01MH090948 (J.Z.)
- …