8 research outputs found
Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super- induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene
Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice
To examine the hormonal/metabolic as well as tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we have generated several transgenic mouse lines expressing a human GLUT4 mini-gene which extends 5.3 kilobases (kb) upstream of transcription start and terminates within exon 10. This construct (hGLUT4-11.5) was expressed in a tissue- specific pattern identical to the endogenous mouse GLUT4 gene. The transcription initiation sites of the transgenic construct were similar to the GLUT4 gene expressed in human tissues. To investigate the hormonal/metabolic-dependent regulation of GLUT4, the transgenic animals were made insulin-deficient by streptozotocin (STZ) treatment. In these animals, STZ-induced diabetes resulted in a parallel decrease in endogenous mouse GLUT4 mRNA and the transgenic human GLUT4 mRNA in white adipose tissue, brown adipose tissue, and cardiac muscle. Similarly, insulin treatment of the STZ- diabetic animals restored both the endogenous mouse and transgenic human GLUT4 mRNA levels. To further define cis-regulatory regions responsible for this hormonal/metabolic regulation, the same analysis was performed on transgenic animals which carry 2.4 kb of the human GLUT4 5'-flanking region fused to a CAT reporter gene (hGLUT4[2.4]-CAT). This reporter construct responded similarly to the human GLUT4 mini-gene demonstrating that the element(s) controlling hormonal/metabolic regulation and tissue specificity all reside exclusively within 2.4 kb of the transcriptional initiation site
Human epithelial model systems for the study of Candida infections in vitro. Pt.I: Adhesion to epithelial models
Adhesion to host tissue represents one of the first steps during the early phase of fungal infections. In order to mediate pathogenesis in the infected host, this process is crucial for colonization and subsequent penetration of the respective tissue. In vivo analyses of the adhesion process in whole organisms are limited because of difficulties in providing reproducible and comparable conditions in the host environment. Therefore, in vitro assays provide the opportunity to study such processes under more defined conditions thus allowing for the analysis of events that are involved in more detail. Here we describe an in vitro adhesion assay making use of human epithelial cell lines to study fungal associations with host epithelia. This assay not only is suited to determine the rate of adhesion in a time-dependent manner but also facilitates global transcriptional profiling in order to determine the fungal response during adhesion at the molecular level