34 research outputs found

    Case Histories of Settlement Performance Comparisons on Ground Improvement Using Soil Stiffness

    Get PDF
    Ground improvements often aim to reduce settlement risks for foundations and this requires reliable methods of prediction. Current approaches are based on empirical procedures and methods developed over 30 years ago. This has resulted historically in designs and installations of unnecessarily sophisticated foundations. In addition many developments now encountered by ground improvement contractors involve previously developed or ‘brownfield’ sites made up of heterogeneous and variable made ground. Methods to predict settlements traditionally use destructive and invasive approaches such as SPT or CPT that can be insensitive to time dependent changes, which often occur when brownfield sites are improved. By comparison geophysical methods are both non-invasive and non-destructive. One such technique that has demonstrated considerable promise is that of continuous surface wave determinations, which allows stiffness depth profiles to be obtained in a cost effective way. A recently developed method to determine settlements from these data has shown through four case studies presented in this paper to accurately predict settlements measured from zone tests. Thus offers a potentially more reliable way to predict settlement profiles than traditionally used methods

    Prospects for detection of ΄(1D)→΄(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi via ΄(3S)→΄(1D)+X\Upsilon(3S) \to \Upsilon(1D) + X

    Full text link
    At least one state in the first family of D-wave bbˉb \bar b quarkonium levels has been discovered near the predicted mass of 10.16 GeV/c2c^2. This state is probably the one with J=2. This state and the ones with J=1 and J=3 may contribute a detectable amount to the decay ΄(1D)→΄(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi, depending on the partial widths for these decays for which predictions vary considerably. The prospects for detection of the chain ΄(3S)→΄(1D)+X→΄ππ+X\Upsilon(3S) \to \Upsilon(1D) + X \to \Upsilon \pi \pi + X are discussed.Comment: 4 pages, LaTeX, 1 figure, to be published in Phys. Rev. D, comment added after Eq. (2

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta ℓ\ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrÎœV = \lambda r^\nu, with ENℓ≈F(Îœ,N)−G(Îœ,N)ℓE_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty

    Di-Pion Decays of Heavy Quarkonium in the Field Correlator Method

    Full text link
    Mechanism of di-pion transitions nS→nâ€ČSππ(n=3,2;nâ€Č=2,1)nS\to n'S\pi\pi(n=3,2; n'=2,1) in bottomonium and charmonium is studied with the use of the chiral string-breaking Lagrangian allowing for the emission of any number of π(K,η),\pi(K,\eta), and not containing fitting parameters. The transition amplitude contains two terms, M=a−bM=a-b, where first term (a) refers to subsequent one-pion emission: ΄(nS)→πBBˉ∗→π΄(nâ€ČS)π\Upsilon(nS)\to\pi B\bar B^*\to\pi\Upsilon(n'S)\pi and second term (b) refers to two-pion emission: ΄(nS)→ππBBˉ→ππ΄(nâ€ČS)\Upsilon(nS)\to\pi\pi B\bar B\to\pi\pi\Upsilon(n'S). The one-parameter formula for the di-pion mass distribution is derived, dwdq∌\frac{dw}{dq}\sim(phase space) âˆŁÎ·âˆ’x∣2|\eta-x|^2, where x=q2−4mπ2qmax2−4mπ2,x=\frac{q^2-4m^2_\pi}{q^2_{max}-4m^2_\pi}, q2≡Mππ2q^2\equiv M^2_{\pi\pi}. The parameter η\eta dependent on the process is calculated, using SHO wave functions and imposing PCAC restrictions (Adler zero) on amplitudes a,b. The resulting di-pion mass distributions are in agreement with experimental data.Comment: 62 pages,8 tables,7 figure

    The abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry

    Full text link
    Flaton models of Peccei-Quinn symmetry have good particle physics motivation, and are likely to cause thermal inflation leading to a well-defined cosmology. They can solve the Ό\mu problem, and generate viable neutrino masses. Canonical flaton models predict an axion decay constant F_a of order 10^{10} GeV and generic flaton models give F_a of order 10^9 GeV as required by observation. The axion is a good candidate for cold dark matter in all cases, because its density is diluted by flaton decay if F_a is bigger than 10^{12} GeV. In addition to the dark matter axions, a population of relativistic axions is produced by flaton decay, which at nucleosynthesis is equivalent to some number \delta N_\nu of extra neutrino species. Focussing on the canonical model, containing three flaton particles and two flatinos, we evaluate all of the flaton-flatino-axion interactions and the corresponding axionic decay rates. They are compared with the dominant hadronic decay rates, for both DFSZ and KSVZ models. These formulas provide the basis for a precise calculation of the equivalent \delta N_\nu in terms of the parameters (masses and couplings). The KSVZ case is probably already ruled out by the existing bound \delta N_\nu\lsim 1. The DFSZ case is allowed in a significant region of parameter space, and will provide a possible explanation for any future detection of nonzero ΎNΜ\delta N_\nu

    Closed-flavor pi + J/psi and pi + Upsilon Cross Sections at Low Energies from Dipion Decays

    Full text link
    The scale of low energy c-cbar and b-bbar cross sections on light hadrons is of great importance to searches for the quark gluon plasma using the heavy-quarkonium suppression signature. Unfortunately, little is known about these near-threshold cross sections at present, and recent theoretical estimates span many orders of magnitude. Here we use experimental data on the four observed closed-flavor heavy quarkonium hadronic decays psi' -> pi pi J/psi, Upsilon' -> pi pi Upsilon, Upsilon'' -> pi pi Upsilon and Upsilon'' -> pi pi Upsilon', combined with simple models of the transition amplitudes, to estimate the pion scattering cross sections of c-cbar and b-bbar mesons near threshold. Specifically we consider the closed-flavor reactions pi J/psi -> pi psi', pi Upsilon -> pi Upsilon', pi Upsilon -> pi Upsilon'' and pi Upsilon' -> pi Upsilon'' and their time-reversed analogues. Our results may be useful in constraining theoretical models of the strong interactions of heavy quarkonia, and can be systematically improved through future detailed studies of dipion decays, notably psi' -> pi pi J/psi and Upsilon'' -> pi pi Upsilon.Comment: 6 pages, 6 figure

    Spin Effects in Two Quark System and Mixed States

    Get PDF
    Based on the numeric solution of a system of coupled channels for vector mesons (SS- and DD-waves mixing) and for tensor mesons (PP- and FF-waves mixing) mass spectrum and wave functions of a family of vector mesons qqˉq\bar{q} in triplet states are obtained. The calculations are performed using a well known Cornell potential with a mixed Lorentz-structure of the confinement term. The spin-dependent part of the potential is taken from the Breit-Fermi approach. The effect of singular terms of potential is considered in the framework of the perturbation theory and by a configuration interaction approach (CIA), modified for a system of coupled equations. It is shown that even a small contribution of the DD-wave to be very important at the calculation of certain characteristics of the meson states.Comment: 12 pages, LaTe

    Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

    Full text link
    If all strongly interacting sparticles (the squarks and the gluinos) in an unconstrained minimal supersymmetric standard model (MSSM) are heavier than the corresponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12% in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (≈20\approx 20%). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the bljblj\etslash, l=eandÎŒl= e and \mu , and bτjb\tau j\etslash signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowed by the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to appear in JHE

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tan⁥ÎČ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tan⁥ÎČ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tan⁥ÎČ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ
    corecore