9 research outputs found

    Proposed Algorithm MPPT for Photovoltaic System

    Get PDF
    A proposed algorithm MPPT (Maximum Power Point Tracking) is proposed in this paper. When the insolation change rapidly, the P&O (Perturb and Observe) algorithm is used to adjust the operating point of the PV (Photovoltaic) array close to the MPP (Maximum Power Point) for fast tracking; also, the INC (Incremental Conductance) algorithm and the fuzzy controller skip drawbacks of the P&O algorithm by decreasing oscillations around the MPP and the underestimated. In addition, to improve the control precision, the effectiveness of proposed algorithm is validated by simulation using Matlab/Simulink, the simulation results show that the proposed algorithm tracks the MPP quickly, reduces the oscillation around the MPP effectively and improves the energy conversion efficiency of the PV panel

    PAPR reduction in FBMC-OQAM systems based on discrete sliding norm transform technique

    No full text
    This paper deals with the Peak to Average Power Ratio (PAPR) drawback appeared in Filter-Bank Multi-Carriers with Offset-QAM (FBMC-OQAM) which is the candidate waveform in 5G wireless communication systems. A post-Inverse Discrete Fourier Transform (IDFT) Discrete Sliding Norm Transform (DSNT) is proposed based on L2-metric and the norm of five samples at each sliding operation. The overlapping structure of FBMC-OQAM is considered in the proposed L2-by-5 DSNT formulation. It can significantly reduce the PAPR in FBMC-OQAM systems, which ensures a linear amplification at the High Power Amplifier (HPA) and avoids signal distortion. The main advantages of this technique are its lower computational complexity compared to the known techniques, and the fact that it does not require any Side Information (SI) at the receiver. Simulation results show that the L2-by-5 DSNT technique can achieve an improvement of 40% in PAPR reduction at CCDF = 10–3 compared to the original FBMC-OQAM system
    corecore