5 research outputs found

    Orthogonally Regularized Deep Networks For Image Super-resolution

    Full text link
    Deep learning methods, in particular trained Convolutional Neural Networks (CNNs) have recently been shown to produce compelling state-of-the-art results for single image Super-Resolution (SR). Invariably, a CNN is learned to map the low resolution (LR) image to its corresponding high resolution (HR) version in the spatial domain. Aiming for faster inference and more efficient solutions than solving the SR problem in the spatial domain, we propose a novel network structure for learning the SR mapping function in an image transform domain, specifically the Discrete Cosine Transform (DCT). As a first contribution, we show that DCT can be integrated into the network structure as a Convolutional DCT (CDCT) layer. We further extend the network to allow the CDCT layer to become trainable (i.e. optimizable). Because this layer represents an image transform, we enforce pairwise orthogonality constraints on the individual basis functions/filters. This Orthogonally Regularized Deep SR network (ORDSR) simplifies the SR task by taking advantage of image transform domain while adapting the design of transform basis to the training image set

    DFDL: Discriminative Feature-oriented Dictionary Learning for Histopathological Image Classification

    Full text link
    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structure. In this paper, we propose an automatic feature discovery framework for extracting discriminative class-specific features and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific features which are suitable for representing samples from the same class while are poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian lung images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, show the significance of DFDL model in a variety problems over state-of-the-art methodsComment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI), 201

    Iterative Convex Refinement for Sparse Recovery

    No full text
    corecore