26 research outputs found

    Optically induced spin polarization of an electric current through a quantum dot

    Full text link
    We examine electron transport through semiconductor quantum dot subject to a continuous circularly polarized optical irradiation resonant to the electron - heavy hole transition. Electrons having certain spin polarization experience Rabi oscillation and their energy levels are shifted by the Rabi frequency. Correspondingly, the equilibrium chemical potential of the leads and the lead-to-lead bias voltage can be adjusted so only electrons with spin-up polarization or only electrons with spin-down polarization contribute to the current. The temperature dependence of the spin polarization of the current is also discussed.Comment: Several misprints are correcte

    Electron Dynamics in a Coupled Quantum Point Contact Structure with a Local Magnetic Moment

    Full text link
    We develop a theoretical model for the description of electron dynamics in coupled quantum wires when the local magnetic moment is formed in one of the wires. We employ a single-particle Hamiltonian that takes account of the specific geometry of potentials defining the structure as well as electron scattering on the local magnetic moment. The equations for the wave functions in both wires are derived and the approach for their solution is discussed. We determine the transmission coefficient and conductance of the wire having the local magnetic moment and show that our description reproduces the experimentally observed features.Comment: Based on work presented at 2004 IEEE NTC Quantum Device Technology Worksho

    Modelling chemical reactions using semiconductor quantum dots

    Full text link
    We propose using semiconductor quantum dots for a simulation of chemical reactions as electrons are redistributed among such artificial atoms. We show that it is possible to achieve various reaction regimes and obtain different reaction products by varying the speed of voltage changes applied to the gates forming quantum dots. Considering the simplest possible reaction, H2+H→H+H2H_2+H\to H+H_2, we show how the necessary initial state can be obtained and what voltage pulses should be applied to achieve a desirable final product. Our calculations have been performed using the Pechukas gas approach, which can be extended for more complicated reactions

    Enhancing the conductance of a two-electron nanomechanical oscillator

    Full text link
    We consider electron transport through a mobile island (i.e., a nanomechanical oscillator) which can accommodate one or two excess electrons and show that, in contrast to immobile islands, the Coulomb blockade peaks, associated with the first and second electrons entering the island, have different functional dependences on the nano-oscillator parameters when the island coupling to its leads is asymmetric. In particular, the conductance for the second electron (i.e., when the island is already charged) is greatly enhanced in comparison to the conductance of the first electron in the presence of an external electric field. We also analyze the temperature dependence of the two conduction peaks and show that these exhibit different functional behaviors.Comment: 16 pages, 5 figure

    Proton transport and torque generation in rotary biomotors

    Full text link
    We analyze the dynamics of rotary biomotors within a simple nano-electromechanical model, consisting of a stator part and a ring-shaped rotor having twelve proton-binding sites. This model is closely related to the membrane-embedded F0_0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0_0 motor, even though our analysis is applicable to the bacterial flagellar motor.Comment: 24 pages, 5 figure

    Influence of Magnetic Moment Formation on the Conductance of Coupled Quantum Wires

    Full text link
    In this report, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al. [Appl. Phys. Lett. \bf{82}, 3952 (2003)], who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75â‹…0.75\cdot or 0.25â‹…2e2/h0.25\cdot 2e^2/h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

    Detection of local-moment formation using the resonant interaction between coupled quantum wires

    Full text link
    We study the influence of many-body interactions on the transport characteristics of a novel device structure, consisting of a pair of quantum wires that are coupled to each other by means of a quantum dot. Under conditions where a local magnetic moment is formed in one of the wires, we show that tunnel coupling to the other gives rise to an associated peak in its density of states, which can be detected directly in a conductance measurement. Our theory is therefore able to account for the key observations in the recent study of T. Morimoto et al. [Appl. Phys. Lett. {\bf 82}, 3952 (2003)], and demonstrates that coupled quantum wires may be used as a system for the detection of local magnetic-moment formation

    Acoustomagnetoelectric effect in two-dimensional materials: Geometric resonances and Weiss oscillations

    Full text link
    We study electron transport in two-dimensional materials with parabolic and linear (graphene) dispersions of the carriers in the presence of surface acoustic waves and an external magnetic field using semiclassical Boltzmann equations approach. We observe an oscillatory behavior of both the longitudinal and Hall electric currents as functions of the surface acoustic wave frequency at a fixed magnetic field and as functions of the inverse magnetic field at a fixed frequency of the acoustic wave. We explain the former by the phenomenon of geometric resonances, while we relate the latter to the Weiss-like oscillations in the presence of the dynamic superlattice created by the acoustic wave. Thus we demonstrate the dual nature of the acoustomagnetoelectric effect in two-dimensional electron gas.Comment: Manuscript: 9 pages, 2 figure
    corecore