301 research outputs found

    Magnetic Nanoparticle Composites: Synergistic Effects and Applications

    Get PDF
    Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine

    Interaction of ZnO Nanostructures with Proteins: In Vitro Fibrillation/Antifibrillation Studies and in Silico Molecular Docking Simulations

    Get PDF
    Protein amyloidosis is related to many neurological disorders. Nanoparticles (NPs) due to their small size can regulate both the polypeptide monomers/oligomers assembly into amyloid fibrils/plaques and the disintegration of the existent plaques. Herein, we have synthesized ZnO nanoflowers and polyol-coated ZnO NPs of relatively small size (40 nm) with cylindrical shape, through solvothermal and microwave-assisted routes, respectively. The effect of the different morphology of nanostructures on the fibrillation/antifibrillation process was monitored in bovine serum albumin (BSA) and human insulin (HI) by fluorescence Thioflavin T (ThT) measurements. Although both nanomaterials affected the amyloid formation mechanism as well as their disaggregation, ZnO nanoflowers with their sharp edges exhibited the greatest amyloid degradation rate in both model proteins (73% and 35%, respectively) and inhibited the most the insulin fibril growth, while restrained also the fibrillation process in the case of albumin solution. In silico molecular docking simulations on the crystal structure of BSA and HI were performed to analyze further the observed in vitro activity of ZnO nanostructures. The binding energy of ZnO NPs was found lower for BSA (−5.44), highlighting their ability to act as catalysts in the fibrillation process of albumin monomers

    Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties

    Get PDF
    Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case

    Dimpled SiO₂@γ-Fe₂O₃ nanocomposites – fabrication and use for arsenic adsorption in aqueous medium

    Get PDF
    We report the synthesis of nanocomposites made of silica nanoparticles whose six surface dimples are decorated with magnetic maghemite nanoparticles and their use for detection and recovery of arsenic in aqueous media. Precursor silica nanoparticles have aminated polystyrene chains at the bottom of their dimples and the maghemite nanoparticles are surface functionalized with carboxylic acid groups in two steps: amination with 3-aminopropyltrimethoxysilane, then derivatization with succinic anhydride in the presence of triethylamine. In the end, the colloidal assembly consists of the regioselective grafting of the carboxylic acid-modified iron oxide nanoparticles onto the 6-dimple silica nanoparticles. Several characterization techniques such as transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) are employed to assess the grafting process and study the influence of the maghemite functional groups on the quality of the composites formed. The resulting magnetic nanocomposites are used for the environmentally benign detection and removal of arsenic from aqueous medium, being readily extracted through means of magnetic separation

    Development and Characterization of Curcumin-Silver Nanoparticles as a Promising Formulation to Test on Human Pterygium-Derived Keratinocytes

    Get PDF
    Pterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease. Previous studies have demonstrated that curcumin, polyphenol isolated from the rhizome of Curcuma longa, induces apoptosis of human pterygium fibroblasts in a dose- and time-dependent manner showing promising activity in the treatment of this ophthalmic disease. However, this molecule is not very soluble in water in either neutral or acidic pH and is only slightly more soluble in alkaline conditions, while its dissolving in organic solvents drastically reduces its potential use for biomedical applications. A nanoformulation of curcumin stabilized silver nanoparticles (Cur-AgNPs) seems an effective strategy to increase the bioavailability of curcumin without inducing toxic effects. In fact, silver nitrates have been used safely for the treatment of many ophthalmic conditions and diseases for a long time and the concentration of AgNPs in this formulation is quite low. The synthesis of this new compound was achieved through a modified Bettini's method adapted to improve the quality of the product intended for human use. Indeed, the pH of the reaction was changed to 9, the temperature of the reaction was increased from 90 °C to 100 °C and after the synthesis the Cur-AgNPs were dispersed in Borax buffer using a dialysis step to improve the biocompatibility of the formulation. This new compound will be able to deliver both components (curcumin and silver) at the same time to the affected tissue, representing an alternative and a more sophisticated strategy for the treatment of human pterygium. Further in vitro and in vivo assays will be required to validate this formulation

    Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L−1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m−2 s−1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species

    Tailoring Ca-Based Nanoparticles by Polyol Process for Use as Nematicidals and pH Adjusters in Agriculture

    Get PDF
    The remarkable progress in nanotechnology has extended the application of inorganic nanoparticles (NPs) in the agriculture sector, as both economically sustainable and environmentally sound alternatives. Root knot nematodes are undoubtedly a foremost problem of agriculture, and research strives to develop effective materials to tackle this issue. Herein, the microwave-assisted selective polyol synthesis of different compositions of Ca-based NPs, Ca(OH)2, Ca(OH)2/CaCO3, and CaCO3 is reported and the products were evaluated as nematicides and pH adjusters. Two precursors (CaCl2 and Ca(NO3)2) and three polyols (1,2-propylene glycol (PG), tetraethylene glycol (TEG), polyethylene glycol (PEG 8000)) that differ in their redox potential have been utilized to provide selectivity over composition. On the basis of the utilized polyols, NPs are produced as inorganic/organic hybrid formulations with a biocompatible organic coating that provides increased colloidal stability and controlled release of active components. Characterization of NPs has been carried out by XRD, TGA, FTIR, TEM, and pH-metry. Each composition exhibited different pH changing ability, an essential feature for agrochemical applications. The in vitro nematicidal activity of Ca(OH)2, Ca(OH)2/CaCO3, and CaCO3NPs was evaluated on second stage juveniles (J2) of two Meloidogyne species (Meloidogyne incognita and Meloidogyne javanica) based on nematode paralysis experiments. Results unveiled nematicidal activity for all evaluated Ca-based NPs, while Ca(OH)2 and CaCO3 NPs appeared to be the most and the least effective ones, respectively. The nematicidal effect appears to be boosted by the release of [OH]- anions, as indicated by pH-metric measurements, displaying the crucial role of [OH]- anions in their nematicidal activity

    Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants

    Get PDF
    Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 μg/mL, 150 μg/mL, and > 500 μg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides

    Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis

    Get PDF
    Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization
    • …
    corecore