74 research outputs found
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Glial Activation
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase 3 family, is activated by oxidative stress. The death-signaling pathway mediated by ASK1 is inhibited by DJ-1, which is linked to recessively inherited Parkinson's disease (PD). Considering that DJ-1 deficiency exacerbates the toxicity of the mitochondrial complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we sought to investigate the direct role and mechanism of ASK1 in MPTP-induced dopamine neuron toxicity. In the present study, we found that MPTP administration to wild-type mice activates ASK1 in the midbrain. In ASK1 null mice, MPTP-induced motor impairment was less profound, and striatal dopamine content and nigral dopamine neuron counts were relatively preserved compared to wild-type littermates. Further, microglia and astrocyte activation seen in wild-type mice challenged with MPTP was markedly attenuated in ASK1−/− mice. These data suggest that ASK1 is a key player in MPTP-induced glial activation linking oxidative stress with neuroinflammation, two well recognized pathogenetic factors in PD. These findings demonstrate that ASK1 is an important effector of MPTP-induced toxicity and suggest that inhibiting this kinase is a plausible therapeutic strategy for protecting dopamine neurons in PD
- …