5 research outputs found

    Phase transitions in a frustrated XY model with zig-zag couplings

    Full text link
    We study a new generalized version of the square-lattice frustrated XY model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplings ρ\rho can be used to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustrated XY model. The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behavior. Depending on the value of ρ\rho, two separate transitions or a transition line in the universality class of the XY-Ising model, with combined Z2Z_2 and U(1) symmetries, takes place. In particular, the phase transitions of the standard square-lattice and triangular-lattice frustrated XY models correspond to two different cuts through the same transition line. Estimates of the chiral (Z2Z_2) critical exponents on this transition line deviate significantly from the pure Ising values, consistent with that along the critical line of the XY-Ising model. This suggests that a frustrated XY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical realization of the XY-Ising model critical line.Comment: 11 pages, 9 figures, RevTex, to appear in Phys. Rev.

    String theory predictions for future accelerators

    Get PDF
    We consider, in a string theory framework, physical processes of phenomenological interest in models with a low string scale. The amplitudes we study involve tree-level virtual gravitational exchange, divergent in a field-theoretical treatment, and massive gravitons emission, which are the main signatures of this class of models. First, we discuss the regularization of summations appearing in virtual gravitational (closed string) Kaluza-Klein exchanges in Type I strings. We argue that a convenient manifestly ultraviolet convergent low energy limit of type I string theory is given by an effective field theory with an arbitrary cutoff Λ\Lambda in the closed (gravitational) channel and a related cutoff Ms2/ΛM_s^2/\Lambda in the open (Yang-Mills) channel. We find the leading string corrections to the field theory results. Second, we calculate exactly string tree-level three and four-point amplitudes with gauge bosons and one massive graviton and examine string deviations from the field-theory result.Comment: 39 pages, 8 figures, references adde

    Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds

    Get PDF
    The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic field are considered. For rational values of the average flux quantum per plaquette ff, the superconducting transition temperature vanishes, for increasing dilution, at a critical value xS(f)x_S(f), while the vortex ordering remains stable up to xVL>xSx_{VL}>x_S, much below the value xpx_p corresponding to the geometric percolation threshold. For xVL<x<xp x_{VL}<x<x_p, the array behaves as a zero-temperature vortex-glass. Numerical results for f=1/2f=1/2 from defect energy calculations are presented which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Improving Our Understanding of Measured Jitter (in HAMR)

    No full text
    corecore