6,956 research outputs found
Celebratory Symposium B – Metal Centres in Supramolecular and Biological Structures Design of Artificial Enzymes Using the Metals of the Periodic Table
info:eu-repo/semantics/publishedVersio
A Personal View
Funding Information: This research was supported by the Associate Laboratory for Green Chemistry—LAQV (UIDB/50006/2020 and UIDP/50006/2020), which was financed by national funds from Fundacão para a Ciência e a Tecnologia, MCTES (FCT/MCTES). Publisher Copyright: © 2023 by the author.A story going back almost 40 years is presented in this manuscript. This is a different and more challenging way of reporting my research and I hope it will be useful to and target a wide-ranging audience. When preparing the manuscript and collecting references on the subject of this paper—aldehyde oxidoreductase from Desulfovibrio gigas—I felt like I was travelling back in time (and space), bringing together the people that have contributed most to this area of research. I sincerely hope that I can give my collaborators the credit they deserve. This study is not presented as a chronologic narrative but as a grouping of topics, the development of which occurred over many years.publishersversionpublishe
Four dimensional R^4 superinvariants through gauge completion
We fully compute the N=1 supersymmetrization of the fourth power of the Weyl
tensor in d=4 x-space with the auxiliary fields. In a previous paper, we showed
that their elimination requires an infinite number of terms; we explicitely
compute those terms to order \kappa^4 (three loop). We also write, in
superspace notation, all the possible N=1 actions, in four dimensions, that
contain pure R^4 terms (with coupling constants). We explicitely write these
actions in terms of the \theta components of the chiral density \epsilon and
the supergravity superfields R, G_m, W_{ABC}. Using the method of gauge
completion, we compute the necessary \theta components which allow us to write
these actions in x-space. We discuss under which circumstances can these extra
R^4 correction terms be reabsorbed in the pure supergravity action, and their
relevance to the quantum supergravity/string theory effective actions.Comment: 20 pages, no figures. Sec. 3 clarified; typos correcte
Enzymatic activity mastered by altering metal coordination spheres
J Biol Inorg Chem (2008) 13:1185–1195 DOI 10.1007/s00775-008-0414-3Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion
Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria
Acc. Chem. Res., 2006, 39 (10), pp 788–796
DOI: 10.1021/ar050104kMolybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions. The metal atom (Mo or W) is coordinated to one or two pyranopterin molecules and to a variable number of ligands such as oxygen (oxo, hydroxo, water, serine, aspartic acid), sulfur (cysteines), and selenium (selenocysteines) atoms. In addition, these proteins contain redox cofactors such as iron-sulfur clusters and heme groups. All of these metal cofactors are along an electron-transfer pathway that mediates the electron exchange between substrate and an external electron acceptor (for oxidative reactions) or donor (for reductive reactions). We describe in this Account a combination of structural and electronic paramagnetic resonance studies that were used to reveal distinct aspects of these enzymes
The tetranuclear copper active site of nitrous oxide reductase: the CuZ center
J Biol Inorg Chem (2011) 16:183–194
DOI 10.1007/s00775-011-0753-3This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes,
reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this
enzyme, opened a novel area of research in metallobiochemistry.
In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying
intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered,
the CuZ center remains a scientific challenge, with many hypotheses still being formed
The electron transfer complex between nitrous oxide reductase and its electron donors
J Biol Inorg Chem (2011) 16:1241–1254
DOI 10.1007/s00775-011-0812-9Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N2OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N2OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter
cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking
simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental
data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N2OR, or an electrostatic nature, in the case of P. denitrificans N2OR
and A. cycloclastes N2OR. A set of well-conserved residues on the N2OR surface were identified as being part of the electron transfer pathway from the redox partner to N2OR(Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N2OR sequence). Moreover, we
built a model for Wolinella succinogenes N2OR, an enzyme that has an additional c-type-heme-containing domain. The
structures of the N2OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two
domains. The orientation of the c-type-heme-containing domain relative to the N2OR domain is similar to that found in the other electron transfer complexes
Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria
J Biol Inorg Chem (2004) 9: 145–151
DOI 10.1007/s00775-003-0506-zWe report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme
- …