478 research outputs found
Protein quality of amaranth grains cultivated in Ethiopia as affected by popping and fermentation
The effect of popping and fermentation on protein quality of three different varieties of amaranth grains cultivated in Ethiopia was evaluated. Total lysine content of the grains was higher than that of commonly available cereals but close to that of legumes. Methionine and cysteine contents in the grains were also higher than that found in cereal and legume proteins. Percentage of total indispensable amino acids, excluding tryptophan, was 43% - 49%, which was higher than WHO reference pattern (31%). Popping resulted in 36% and 37% reduction in total lysine and cysteine contents, respectively, whereas fermentation reduced cysteine, lysine and methionine contents by 16%, 20% and 20%, respectively. From the free amino acids, histidine was the major indispensable amino acid but threonine was not detected. During popping, all free amino acids, except threonine, were reduced. On the other hand, fermentation significantly increased (p < 0.01) most amino acids except arginine, which was significantly decreased (p < 0.01), and tyrosine and glutamic acid, for which no change was observed. Popping decreased in vitro protein digestibility (IVPD) by 8.3% - 17.1% while fermentation increased IVPD by 4.8% - 7.5%. Substitution of amaranth for wheat and/or maize during complementary food formulation could contribute much to the daily requirements of indispensable amino acids of young children
Recasting spatial food web ecology as an ecosystem science
Background/questions/methods

Food webs are complex systems in which organisms interact with each other and with the abiotic aspects of their environment, thus acting as the conduit for transfers of energy and nutrients through ecosystems. Classical approaches to food webs focus strongly on patterns and processes occurring at the community level rather than at the broader ecosystem scale. Recent developments in community ecology suggest that spatial processes may be important in affecting food web dynamics and affect ecosystems as well, thus leading to the idea of meta-ecosystems. Here, we make a synthesis on how the links between food web dynamics and spatial ecosystem dynamics may be studied through (i) identifying differences between metacommunity and landscape ecology approaches when dealing with food webs, (ii) arguing that a tighter synthesis of the two approaches is needed for a good understanding of how diversity, ecosystem process and trait distributions in landscapes are related, and (iii) laying out how this gap can be efficiently bridged under the framework of meta-ecosystems.

Results/conclusions

We identify two possible sets of processes that drive spatial food webs and the ecosystems they occur in: trait-dependent processes and material-dependent processes. Both of these have been shown to be important in affecting various aspects of food web ecology and we ask how they may compare to each other and how they may interact. We argue that interactions between them, while complex, are likely and depend strongly on the size of the meta-ecosystem and its connectivity. A more integrative framework to the study of spatial food webs, which takes into account both approaches, might be key in better understanding the links between ecosystem and community dynamics at large spatial scales.

Extinction Debt in Source-Sink Metacommunities
In an increasingly modified world, understanding and predicting the consequences of landscape alteration on biodiversity is a challenge for ecologists. To this end, metacommunity theory has developed to better understand the complexity of local and regional interactions that occur across larger landscapes. While metacommunity ecology has now provided several alternative models of species coexistence at different spatial scales, predictions regarding the consequences of landscape alteration have been done exclusively for the competition-colonization trade off model (CC). In this paper we investigate the effects of landscape perturbation on source-sink metacommunities. We show that habitat destruction perturbs the equilibria among species competitive effects within the metacommunity, driving both direct extinctions and an indirect extinction debt. As in CC models, we found a time lag for extinction following habitat destruction that varied in length depending upon the relative importance of direct and indirect effects. However, in contrast to CC models, we found that the less competitive species are more affected by habitat destruction. The best competitors can sometimes even be positively affected by habitat destruction, which corresponds well with the results of field studies. Our results are complementary to those results found in CC models of metacommunity dynamics. From a conservation perspective, our results illustrate that landscape alteration jeopardizes species coexistence in patchy landscapes through complex indirect effects and delayed extinctions patterns
Accumulation of Self-Reactive Naive and Memory B Cell Reveals Sequential Defects in B Cell Tolerance Checkpoints in Sjogren's Syndrome
This work was funded by grants number 18237 and 20089 from Arthritis Research UK (http://www.arthritisresearchuk.org) to MB and the William Harvey Research Foundation. EC was recipient of short-term travel fellowships from EMBO (ASTF 318-2010) and EFIS-IL
Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.
Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed
Predator Dispersal Determines the Effect of Connectivity on Prey Diversity
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation
Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function
Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states
Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants
Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simianβhuman immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants
Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses
Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency
HIV therapy by a combination of broadly neutralizing antibodies in humanized mice
Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy the longer half-life of antibodies led to control of viraemia for an average of 60βdays after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals
- β¦