292 research outputs found
Phase and amplitude pre-emphasis techniques for low-power serial links
A novel approach to equalization of high-speed serial links combines both amplitude pre-emphasis to correct for intersymbol interference and phase pre-emphasis to compensate for deterministic jitter, in particular, data-dependent jitter. Phase pre-emphasis augments the performance of low power transmitters in bandwidth-limited channels. The transmitter circuit is implemented in a 90-nm bulk CMOS process and reduces power consumption by pushing CMOS static logic to the output stage, a 4:1 output multiplexer. The received signal jitter over a cable is reduced from 16.15 ps to 10.29 ps with only phase pre-emphasis at the transmitter. The jitter is reduced by 3.6 ps over an FR-4 backplane interconnect. A transmitter without phase pre-emphasis consumes 18 mW of power at 6Gb/s and 600mVpp output swing, a power budget of 3mW/Gb/s, while a transmitter with phase pre-emphasis consumes 24mW, a budget of 4 mW/Gb/s
Inhibitive Action of Artemisia Plant Extract on the Copper Corrosion in Phosphoric Acid.
Effect of Artemisia plant Extract (APE) on the copper corrosion as a corrosion inhibitor in an aerated acidic solution of in 2M H3PO4 containing 3.10-1 M NaCl has been investigated using gravimetric and electrochemical techniques. A significant decrease in the corrosion rate of copper was observed in the presence of the Artemisia plant extract. The potentiodynamic polarization data indicated that the inhibitor was of mixed type. Impedance measurements showed that the charge transfer resistance increased and double layer capacitance decreased with increase in the inhibitor’s concentration. Also, some thermodynamic data for the activation are calculated and discussed. The results obtained from potentiodynamic polarization, impedance measurements and gravimetric method are in good agreement
RADAR performance experiments
Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar
Effet de l’interaction lumiere-salinite sur l’activite du photosysteme ii des feuilles excisees de maïs
La diminution de la croissance vegetative observée chez nombreuses plantes, soumises au stress salin et exposées à des conditions naturelles d’ensoleillement, est souvent associée à une baisse de leur activité photosynthétique. Cependant les mécanismes de l’inhibition photosynthétique sont encore peu étudiés. Le photosystème II (PS II) est considéré un des facteurs clé dans la réponse de la photosynthèse des feuilles aux stress environnementaux. L’association de la lumière et du stress salin parait avoir des effets synergétiques sur l’activité photochimique du PSII conduisant, ainsi à la photoinhibition. L’objectif de cette etude est de diagnostiquer l’effet de l’interaction lumière- salinité sur l’activité photochimique du photosystème II au cours de la photosynthèse. Le materiel vegetal est constitué de deux variétés de maïs (Zea mays L.) fourrager: Aristo et Arper. Des feuilles détachées de plantes cultivées sur milieu témoin (eau distilée), sont incubées pendant 6 heures dans des solutions salines à différentes concentrations (0, 100, 200 et 300 mM NaCl), soit en absence ou en présence de lumière (1000 μmol m-2 s-1). Puis, leurs teneurs en sodium ont été déterminées. Pour vérifiers’il y’aura récupération de leur activité photochimique, d’autres feuilles qui ont été mises à absorber du NaCl dans une solution de 300 mM à la lumière pendant 4 heures, sont transferees dans de l’eau distillée en obscurité ou en lumière. Les resultants montrent une stabilité du rendement quantique maximal (Fv/Fm) pour les feuilles mises à absorber du NaCl à l’obscurité.Par contre l’éclairement associé avec la salinité engender une photoinhibition qui se manifeste par une diminution du rendement quantique maximal du PSII. Cette photoinhibition, due à une accumulation excessive des ions Na+dans les tissus foliaires, est réversible. En effet, en absence d’un seul des facteurs de l’association lumière-salinité le PSII récupère son activité photochimique.Mots Clés: fluorescence chlorophyllienne, feuillesexcisées, stress lumineux, chlorure de sodium, Zea maysEnglish AbstractThe decline in growth observed in many plants, subjected to salt stress and exposed to sunlight conditions, is often associated with a decrease in their photosynthetic activity. No clear mechanisms of the inhibited photosynthesis have emerged since photosystem II (PS II) is considered to play a key role in the response of leaf photosynthesis to environmental perturbations. The combination of light and salt stress appears to have synergistic effects on the photochemical activity of PSII driving, and to photoinhibition. The objective of this study was to evaluate the reversible effect of salinity and light interaction on maximal quantum efficiency of photosystem II (Fv/Fm.). In this experiment, detached leaves of two forage maize (Zea mays L.) varieties, Aristo and Arper were placed during 6 hours in solutions of different concentrations of NaCl (0, 100, 200 and 300 mM) and subjected to light (1000 μmol m-2 s-1) or obscurity. Then, their contents of sodium were determined. In order to verify the photo-inhibition reversibility, other leaves which were incubated in a solution of 300 Mm NaCl, during 4 hours were transferred in distilled water and also subjected to light or to obscurity. Results indicate that leaves which had been put to absorb NaCl in obscurity showed no change in maximal efficiency of PSII (Fv/Fm). Nevertheless, light treatment associated with salinity generates a photo-inhibition of PSII manifested by a significant decrease in maximal efficiency of PSII. This photo-inhibition, due to an excessive accumulation of sodium in leaves, is reversible. It is quite sufficient to eliminate only one factor of the association light-salinity for the PSII activity resume.Keywords: Light stress, sodium chloride, Zea may
Comparative analysis of the efficacy of astigmatic correction after wavefront-guided and wavefront-optimized LASIK in low and moderate myopic eyes
AIM: To evaluate and compare the efficacy of the astigmatic correction achieved with laser in situ keratomileusis (LASIK) in eyes with myopic astigmatism using wavefront-guided (WFG) and wavefront-optimized (WFO) ablation profiles. METHODS: Prospective study included 221 eyes undergoing LASIK: 99 and 122 eyes with low and moderate myopic astigmatism (low and moderate myopia groups). Two subgroups were differentiated in each group according to the ablation profile: WFG subgroup, 109 eyes (45/64, low/moderate myopia groups) treated using the Advanced CustomVue platform (Abbott Medical Optics Inc.), and WFO subgroup, 112 eyes (54/58, low/moderate myopia groups) treated using the EX-500 platform (Alcon). Clinical outcomes were evaluated during a 6-month follow-up, including a vector analysis of astigmatic changes. RESULTS: Significantly better postoperative uncorrected visual acuity and efficacy index was found in the WFG subgroups of each group (P≤0.041). Postoperative spherical equivalent and cylinder were significantly higher in WFO subgroups (P≤0.003). In moderate myopia group, a higher percentage of eyes with a postoperative cylinder ≤0.25 D was found in the WFG subgroup (90.6% vs 65.5%, P=0.002). In low and moderate myopia groups, the difference vector was significantly higher in the WFO subgroup compared to WFG (P<0.001). In moderate myopia group, the magnitude (P=0.008) and angle of error (P<0.001) were also significantly higher in the WFO subgroup. Significantly less induction of high order aberrations were found with WFG treatments in both low and moderate myopia groups (P≤0.006). CONCLUSION: A more efficacious correction of myopic astigmatism providing a better visual outcome is achieved with WFG LASIK compared to WFO LASIK.Partially supported by a grant from Abbott Medical Optics
Shape-assisted self-assembly
Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication
Impact of climate change on forest resources: Case of Quercus rotundifolia, Tetraclinis articulata, Juniperus phoenicea, J. oxycedrus, J. thurifera and Pinus halepensis
Forest resources in the Ourika watershed are subject to several anthropogenic and climatic degradation factors. As for the human factor, this degradation of forest resources is explained by the bad practices exercised by the local population expressed by the cutting of live wood, carbonization, and overgrazing. In terms of the climatic factor, the decrease in the amount of rainfall and the increase in temperature contribute to the exacerbation of the degradation of these resources. In order to better understand the evolution of plant cover in a changing climate context, this study highlights an assessment of the impact of climate change on forest dynamics based on a process-based model at the forest landscape scale which makes it possible to simulate the changes according to growth, succession, disturbances (fire, wind, insects, etc), forest management, and land use change. This analysis is based on the use of the LANDIS-II model and the PnET-succession extension. Projections of the dynamics of forest communities are made using climate projections from the Japanese global circulation model adopted by Morocco (model for interdisciplinary research on climate – earth system models) and this by adopting the two climate scenarios , representative concentration pathways 4.5 and 8.5. The results obtained highlight the spatial distribution of the ecosystems studied after 100 years with a quantitative evaluation of the total average biomass of these resources as a function of climatic disturbances. In general, the estimated total biomass will decline over the coming years under the joint effect of the climate change and the aging of forest stands, while on the other hand, the distribution of potential areas for species settlement remains independent of the effect of these climate changes
- …