11 research outputs found

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Yeasts in traditional Moroccan goat cheese

    No full text
    Nine samples of goat’s cheese were collected. A total of 68 yeasts were isolated and grouped according to their M13 PCR-fingerprints. Representative isolates of each fingerprint group were identified using rRNA and/or protein-coding gene sequencing leading to the identification of 18 yeast species. The dominant species were Kluyveromyces lactis (19.1%), Saccharomyces cerevisiae (11.7%), Yarrowia lipolytica (10.3%), Candida parapsilosis (10.3%), Kazachstania unispora (8.0%), Kluyveromyces marxianus (7.4%) and Pichia fermentans (5.9%). The yeast diversity of Moroccan goat’s cheese was established using genotypic techniques which proved to be a straightforward approach for the identiïŹcation of all isolates. This work yielded a well-characterized collection of yeasts from traditional and semi-industrial Moroccan goat cheeses which will be a resource of strains with speciïŹc properties

    Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk

    No full text
    Two catalase- and oxidase-negative Streptococcus-like strains, LMG 27682(T) and LMG 27684(T), were isolated from raw camel milk in Morocco. Comparative 16S rRNA gene sequencing assigned these bacteria to the genus Streptococcus with Streptococcus rupicaprae 2777-2-07(T) as their closest phylogenetic neighbour (95.9 % and 95.7 % similarity, respectively). 16S rRNA gene sequence similarity between the two strains was 96.7 %. Although strains LMG 27682(T) and LMG 27684(T) shared a DNA DNA hybridization value that corresponded to the threshold level for species delineation (68 %), the two strains could be distinguished by multiple biochemical tests, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes and by their MALDI-TOF MS profiles. On the basis of these considerable phenotypic and genotypic differences, we propose to classify both strains as novel species of the genus Streptococcus, for which the names Streptococcus moroccensis sp. nov. (type strain, LMG 27682(T)=CCMM B831(T)) and Streptococcus rifensis sp. nov. (type strain, LMG 27684(T)=CCMM B833(T)) are proposed

    Biofilm and Quorum Sensing in <em>Helicobacter pylori</em>

    No full text
    Helicobacter pylori (H. pylori) is a gram-negative bacterium living in the human gastrointestinal tract considered as the most common cause of gastritis. H. pylori was listed as the main risk factor for gastric cancer. Triple therapy consisting of a proton pump inhibitor and combinations of antibiotics is the main treatment used. However, this line of therapy has proven less effective mainly due to biofilm formation. Bacteria can regulate and synchronize the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis, and biofilm formation by quorum sensing (QS), thus contributing to antimicrobial resistance. Henceforth, the inhibition of QS called quorum quenching (QQ) is a promising target and alternative to fight H. pylori resistance to antimicrobials. Many phytochemicals as well as synthetic compounds acting as quorum quenchers in H. pylori were described in vitro and in vivo. Otherwise, many other compounds known as quorum quenchers in other species and inhibitors of biofilm formation in H. pylori could act as quorum quenchers in H. pylori. Here, we summarize and discuss the latest findings on H. pylori’s biofilm formation, QS sensing, and QQ mechanisms

    Preclinical Evaluation of panobinostat and ONC201 for the treatment of diffuse intrinsic pontine glioma (DIPG)

    No full text
    Diffuse intrinsic pontine glioma (DIPG) also referred as paediatric high-grade glioma (pHGG) is a fast-growing and aggressive type of childhood brain cancer. Recent studies investigating the molecular pathogenesis of DIPG have identified new therapeutic targets, paving the way for a new line of drugs mainly HDAC inhibitors. However, despite long years of trials, no significant results have been generated yet. Panobinostat is a HDAC inhibitor that has shown promising preclinical cytotoxicity in DIPG but failed so far in clinical trials. This study aims to re-evaluate the efficacy of Panobinostat in DIPG in vitro using patient-derived DIPG cell cultures obtained directly from patients. ONC201 is another potentially effective drug in DIPG. This apoptotic agent has been considered in a few clinical trials in diffuse glioma including DIPG. Our results reveal a dose-dependent response to Panobinostat and ONC201 in DIPG cells. However, Panobinostat caused a significant reduction in the mean percentage cell viability at a lower concentration compared to ONC201. Panobinostat caused significant decreases in DIPG cell viability at concentrations greater than or equal to 0.002 ΌM (p<0.05), the response reached a plateau after 0.1 ΌM, which reduced cell viability to 32.81 % ± 0.25 % (p = 6.74E−06) when compared to control cells. ONC201 only significantly induced apoptosis at concentrations equal or higher than 0.01 ΌM (p<0.05), with its effect plateauing after 0.2 ΌM. This pre-clinical study supports the effectiveness of Panobinostat as a potential therapeutic agent for DIPG compared to ONC201, with no apparent synergistic effect observed in combination

    Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco

    No full text
    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain

    Specific Host-Responsive Associations Between Medicago truncatula Accessions and Sinorhizobium Strains

    No full text
    Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process
    corecore