87 research outputs found
The Large Magellanic Cloud and the Distance Scale
The Magellanic Clouds, especially the Large Magellanic Cloud, are places
where multiple distance indicators can be compared with each other in a
straight-forward manner at considerable precision. We here review the distances
derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing
Binaries, and show that the results from these distance indicators generally
agree to within their errors, and the distance modulus to the Large Magellanic
Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding
to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing
the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science.
From a presentation at the conference The Fundamental Cosmic Distance Scale:
State of the Art and the Gaia Perspective, Naples, May 201
Cosmic Microwave Background constraint on residual annihilations of relic particles
Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will
distort its spectrum permanently. In this paper we discuss the distortion
caused by annihilations of relic particles. We use the observational bounds on
deviations from a Planck spectrum to constrain a combination of annihilation
cross section, mass, and abundance. For particles with (s-wave) annihilation
cross section, =\sigma_0, the bound is
f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is
the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density
the particle and its antiparticle contribute if they survive to the present
time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of
the annihilation energy that interacts electromagnetically. We also compute the
less stringent limits for p-wave annihilation. We update other bounds on
residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.
- …