82 research outputs found
Local Electronic Structure in AlN Studied by Single-Crystal ²⁷Al and ¹⁴N NMR and DFT Calculations
Both the chemical shift and quadrupole coupling tensors for 14 N and 27 Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of 14 N ( I=1 ) and 27 Al ( I=5/2 ), the quadrupolar coupling constants were determined to χ(14N)=(8.19±0.02) kHz, and χ(27Al)=(1.914±0.001) MHz. The chemical shift parameters obtained from the data fit were δiso=−(292.6±0.6) ppm and δΔ=−(1.9±1.1) ppm for 14 N, and (after correcting for the second-order quadrupolar shift) δiso=(113.6±0.3) ppm and δΔ=(12.7±0.6) ppm for 27 Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for 27 Al with χ¯¯calc=(1.791±0.003) MHz, but not for 14 N with χ¯¯calc=−(19.5±3.3) kHz
Efficient Recovery of CO2 from Flue Gas by Clathrate Hydrate Formation in Porous Silica Gels
Thermodynamic measurements and NMR spectroscopic analysis were used to show that it is possible to recover CO2 from flue gas by forming a mixed hydrate that removes CO2 preferentially from CO2/N2 gas mixtures using water dispersed in the pores of silica gel. Kinetic studies with 1H NMR microimaging showed that the dispersed water in the silica gel pore system reacts readily with the gas, thus obviating the need for a stirred reactor and excess water. Hydrate phase equilibria for the ternary CO2-N2-water system in silica gel pores were measured, which show that the three-phase hydrate-water-rich liquid-vapor equilibrium curves were shifted to higher pressures at a specific temperature when the concentration of CO2 in the vapor phase decreased. 13C cross-polarization NMR spectral analysis and direct measurement of the CO2 content in the hydrate phase suggested that the mixed hydrate is structure I at gas compositions of more than 10 mol % CO2, and that the CO2 molecules occupy mainly the more abundant 51262 cages. This makes it possible to achieve concentrations of more than 96 mol % CO2 gas in the product after three cycles of hydrate formation and dissociation. 1H NMR microimaging showed that hydrate yields of better than 85%, based on the amount of water, could be obtained in 1 h when a steady state was reached, although ~90% of this yield was achieved after ~20 min of reaction time.NRC publication: Ye
39K NMR of solid potassium salts at 21 T : effect of quadrupolar and chemical shift tensors
39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K+ ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies.Peer reviewed: YesNRC publication: Ye
IN SITU NMR STUDIES OF HYDROGEN STORAGE KINETICS AND MOLECULAR DIFFUSION IN CLATHRATE HYDRATE AT ELEVATED HYDROGEN PRESSURES
Clathrate hydrates can be reasonable choices for high-density hydrogen storage into compact host media, which is an essential task for hydrogen-based future society. However, conventional storage scheme where aqueous solution is frozen with hydrogen gas was impractically slow for practical use. Here we propose a much faster scheme where hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders. The storage kinetics was observed in situ by nuclear magnetic resonance (NMR) spectroscopy in a pressurized tube cell. At pressures up to 20 MPa the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Since the rate-determining step of current storage scheme is body diffusion of hydrogen within the crystalline hydrate media, we have measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that at temperatures down to 250 K the stored hydrogen is highly mobile, so that the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, the clathrate hydrate could offer even more advantages: It is free from hydrogen embrittlement, more chemically durable, more environmentally benign, as well as economically quite affordable.Non UBCUnreviewe
Molecularly imprinted mesoporous organosilica
We have prepared molecularly imprinted mesoporous organosilica (MIMO) using a semicovalent imprinting technique. A thermally reversible covalent bond was used to link a bisphenol A (BPA) imprint molecule to a functional alkoxysilane monomer at two points to generate a covalently bound imprint precursor. This precursor was incorporated into a cross-linked periodic mesoporous silica matrix via a typical acid-catalyzed, triblock copolymer-templated, sol 12gel synthesis. Evidence of imprint sites buried in the pore walls was found through careful characterization of the imprinted material and its comparison to similarly prepared non-imprinted mesoporous organosilica (NIMO) and pure periodic mesoporous silica (PMS). After thermal treatment, the imprinted material (MIMO-ir) removed more than 90% of appropriately sized bisphenol species from water, yet showed significantly lower binding for both smaller and larger molecules containing phenol moieties. Identically treated NIMO-ir showed much poorer retention behavior than MIMO-ir for the same bisphenol species and behaved only slightly better than PMS-ir.Peer reviewed: YesNRC publication: Ye
- …