4 research outputs found

    Simultaneous determination of natural and synthetic steroid estrogens and their conjugates in aqueous matrices by liquid chromatography / mass spectrometry

    Get PDF
    An analytical method for the simultaneous determination of nine free and conjugated steroid estrogens was developed with application to environmental aqueous matrices. Solid phase extraction (SPE) was employed for isolation and concentration, with detection by liquid chromatography/mass spectrometry (LC/MS) using electrospray ionisation (ESI) in the negative mode. Method recoveries for various aqueous matrices (wastewater, lake and drinking water) were determined, recoveries proving to be sample dependent. When spiked at 50 ng/l concentrations in sewage influent, recoveries ranged from 62-89 % with relative standard deviations (RSD) < 8.1 %. In comparison, drinking water spiked at the same concentrations had recoveries between 82-100 % with an RSD < 5%. Ion suppression is a known phenomenon when using ESI; hence its impact on method recovery was elucidated for raw sewage. Both ion suppression from matrix interferences and the extraction procedure has bearing on the overall method recovery. Analysis of municipal raw sewage identified several of the analytes of interest at ng/l concentrations, estriol (E3) being the most abundant. Only one conjugate, estrone 3-sulphate (E1-3S) was observe

    Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry

    Get PDF
    ABSTRACT: Background: In recent years, endocrine disrupting compounds (EDCs) have been found in rivers that receive significant inputs of wastewater. Among EDCs, natural and synthetic steroid hormones are recognized for their potential to mimic or interfere with normal hormonal functions (development, growth and reproduction), even at ultratrace levels (ng L-1). Although conjugated hormones are less active than free hormones, they can be cleaved and release the unconjugated estrogens through microbial processes before or during the treatment of wastewater. Due to the need to identify and quantify these compounds, a new fully automated method was developed for the simultaneous determination of the two forms of several steroid hormones (free and conjugated) in different water matrixes and in urine.Results: The method is based on online solid phase extraction coupled with liquid chromatography and tandem mass spectrometry (SPE-LC-MS/MS). Several parameters were assessed in order to optimize the efficiency of the method, such as the type and flow rate of the mobile phase, the various SPE columns, chromatography as well as different sources and ionization modes for MS. The method demonstrated good linearity (R-2 &gt; 0.993) and precision with a coefficient of variance of less than 10 %. The quantification limits vary from a minimum of 3-15 ng L-1 for an injection volume of 1 and 5 mL, respectively, with the recovery values of the compounds varying from 72 to 117 %.Conclusion: The suggested method has been validated and successfully applied for the simultaneous analysis of several steroid hormones in different water matrixes and in urine
    corecore