3 research outputs found

    Solvothermal synthesis of organoclay/Cu-MOF composite and its application in film modified GCE for simultaneous electrochemical detection of deoxyepinephrine, acetaminophen and tyrosine

    Get PDF
    SUPPORTING INFORMATION: FILE S1: FiguresPlease read abstract in article.The Royal Society ACBI programme (Grant AQ150029), the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation.https://www.rsc.org/journals-books-databases/about-journals/rsc-sustainability/ChemistrySDG-06:Clean water and sanitationSDG-09: Industry, innovation and infrastructur

    Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode

    Get PDF
    © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique. A graphene foam/zirconium-based metal-organic framework composite (GF/UiO-66) was synthesised and then employed to modify glassy carbon electrodes (GCE). These modified electrodes were successfully used for the simultaneous detection and determination of acetaminophen (AC) and tryptophan (TRYP). The combination of GF and UiO-66 endowed the electrodes with a large surface area, good biological compatibility and stability as well as high selectivity and sensitivity. The linear calibration plots for AC and TRYP were obtained over the range of 0.5-200 μM (R2 = 0.999) and 0.5-113 μM (R2 = 0.999) with detection limits of 0.07 μM and 0.06 μM, respectively. The modified electrodes were successfully applied for the determination of AC and TRYP in a pharmaceutical preparation and urine, respectively

    Solvothermal synthesis of organoclay/Cu-MOF composite and its application in film modified GCE for simultaneous electrochemical detection of deoxyepinephrine, acetaminophen and tyrosine

    No full text
    An organoclay/copper-based metal-organic framework (MOF) composite was synthesized using a solvothermal method by growing a Cu-BTC (copper(ii) benzene-1,3,5-tricarboxylate) MOF from a mixture of the MOF precursor solution in which various amounts of organoclay had been dispersed. The organoclay was obtained by intercalating a cationic dye, namely thionin, into a natural Cameroonian clay sampled in Sagba deposit (North West of Cameroon). The organoclay and the as-synthesized composites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) techniques. From Scherrer's equation, the crystallite size of the composite was found to be between 55 and 58 nm, twice as large as the pristine MOF's crystallite size. The organoclay/Cu-MOF composite (Sa-TN50/Cu3(BTC)2) exhibiting a BET surface area of 192 m2 g−1, about twice that of pristine clay and about one seventh that of pristine MOF, was then utilized to form a stable thin film onto glassy carbon electrodes (GCE) by drop coating (Sa-TN50/Cu3(BTC)2/GCE). These electrodes demonstrated electrocatalytic behavior toward deoxyepinephrine (DXEP) and thus enabled selective and simultaneous sensitive detection of three analytes: DXEP, acetaminophen (AC) and tyrosine (TYR) compared with bare GCE and clay modified electrode. Under optimum conditions, Sa-TN50/Cu3(BTC)2/GCE exhibited good performance including large calibration curves ranging from 5.0 μM to 138.0 μM for DXEP, 4.0 μM to 153.0 μM for AC and 1.0 μM to 29.4 μM for TYR. The detection limits were found to be, 0.4 μM, 0.7 μM and 0.2 μM for DXEP, AC and TYR, respectively. The developed sensors have been applied successfully in the quantification of AC in a commercial tablet of AC, and DXEP, AC and TYR in tap water
    corecore