18 research outputs found

    Activation of the DDR Pathway Leads to the Down-Regulation of the TGFβ Pathway and a Better Response to ICIs in Patients With Metastatic Urothelial Carcinoma

    Get PDF
    Immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of metastatic urothelial carcinoma (mUC), a dominant type of bladder cancer (BC). Previous studies have shown an association between gene mutations in the DNA damage response (DDR) pathway and the immunotherapy response in mUC but have neglected the effect of the activation level of the DDR pathway on the ICI response in mUC. A published immunotherapy cohort with genome, transcriptome and survival data for 348 mUC patients was used. An external cohort (The Cancer Genome Atlas Bladder Cancer) and the GSE78220 cohort were used for validation. The activation level of the DDR pathway was quantified using single-sample gene set enrichment analysis (ssGSEA). Further analysis on the genome, immunogenicity, and the immune microenvironment was conducted using the DDR ssGSEA enrichment score-high (DSSH) group and the DDR ssGSEA enrichment score-low (DSSL) group. In the mUC cohorts, the DSSH group was associated with longer overall survival times (P=0.026; Hazard ratio=0.67; 95%CI: 0.46−0.95). The DSSH group was also associated with higher tumor mutation burden, neoantigen load, immune-activated cell patterns, and immune-related gene expression levels. The GSEA results indicated an immune activation state in DSSH group, which correlated with a down-regulation in the transforming growth factor β receptor signaling pathway. Our study suggests that the activation level of the DDR pathway may be a novel predictive marker for immunotherapy efficacy in patients with mUC

    Anaerobic digestion of thickened waste activated sludge under calcium hypochlorite stress: Performance stability and microbial communities

    No full text
    Hypochlorite pretreatment has been proven effective in enhancing waste activated sludge (WAS) anaerobic digestion performances recently. In this study, two semi-continuous anaerobic sequencing batch reactors (ASBRs), one fed with Ca(ClO)2 pretreated thickened WAS (TWAS) and one with raw TWAS, were operated at mesophilic conditions (35 °C) for 145 days. Three loading shocks were introduced to each reactor to compare the performance stability and resilience between the digestion of Ca(ClO)2 pretreated TWAS and untreated TWAS. Microbial community shifts were quantified to reveal the microbiome responses to disturbances. The results suggested that 1% Ca(ClO)2 enhanced the digestion of TWAS by inactivating and transforming the biomass to more easily digested substrates. Co-occurrence network analysis revealed that the strongest interactions in the microbial community occurred in the steady state of TWAS anaerobic digestion.</p

    Spatial distributions of granular activated carbon in up-flow anaerobic sludge blanket reactors influence methane production treating low and high solid-content wastewater

    No full text
    The impacts of granular activated carbon (GAC) spatial distributions in up-flow anaerobic sludge blanket (UASB) reactors treating different solid-content wastewater were evaluated in the present study. When treating high solid-content wastewater, the highest methane yield was observed for UASB supplemented with self-floating GAC (74.2 ± 3.7 %), which was followed by settled + self-floating GAC reactor (65.1 ± 3.8 %), then settled GAC reactor (58.3 ± 1.4 %). When treating low solid-content wastewater, all UASBs achieved improved methane yield, and settled + self-floating GAC reactor achieved the highest methane yield (83.4 ± 3.3 %). Self-floating GAC amended reactor showed the best performance for treating high solid-content wastewater, while settled + self-floating GAC amended reactor was optimal for treating medium and low solid-content wastewater. The spatial distributions of microbial communities differed in the reactors with settled GAC and floating GAC. This study underlines the importance of considering feedwater characteristics when adopting GAC-based UASB processes.</p

    Enhancing methane production and organic loading capacity from high solid-content wastewater in modified granular activated carbon (GAC)-amended up-flow anaerobic sludge blanket (UASB)

    No full text
    Anaerobic digestion of high solid-content wastewater is hindered by high organic loading rates (OLRs). Granular activated carbon (GAC) was reported to promote direct interspecies electron transfer (DIET) and enhance reactor performance. In this study, three up-flow anaerobic sludge blanket (UASB) reactors were supplied with GAC in different locations: bottom (R1), top (R2), and bottom+top (R3). The performances of three reactors at different OLRs treating high solid-content wastewater were evaluated. At a low OLR, the highest methane yield (74 ± 4 %, g CH4-COD/g TCOD) was detected when GAC was supplied at top of the UASB (R2). When a high OLR was applied, the UASB supplemented with GAC at both bottom and top (R3) achieved the highest methane yield (66 ± 2 %, g CH4-COD/g TCOD), whereas the UASB supplemented with GAC at the top (R2) failed. Further studies on spatial distributions of sludge stability, specific methanogenic activities (SMAs), and microbial communities demonstrated the different impacts of GAC location on reactor performance and sludge characteristics under different OLRs. This study highlights the significance of considering organic loading capacity treating high solid-content wastewater when choosing GAC-based UASB systems.</p

    Calcium hypochlorite enhances the digestibility of and the phosphorus recovery from waste activated sludge

    No full text
    Waste activated sludge (WAS) can be treated using anaerobic digestion (AD) for biogas recovery and volume reduction. However, the poor digestibility and hydrolysis of WAS limit AD applications. The current study investigated the feasibility of applying calcium hypochlorite as a WAS pretreatment strategy to improve AD treatment efficiency using laboratory reactors. The results showed that pretreatment with 5 – 20% Ca(ClO)2 (total suspended solids basis) significantly enhanced WAS anaerobic digestibility, and led to significantly enhanced methane production rate and biomethane yield comparing to the AD of raw WAS (P 2 pretreatment (5 – 10%) significantly enhanced digestion efficiency, which can be attributed to the development of fermentative and syntrophic bacteria. However, high Ca(ClO)2 doses (>20%) reduced microbial activities, leading to slow release of dissolved organic compounds and prolonged methane production lag phase. In addition, high Ca(ClO)2 removed 82.7% of the initial phosphate by calcium-phosphate binding, reducing the phosphorus in liquid digestate.</p

    Blackwater biomethane recovery using a thermophilic upflow anaerobic sludge blanket reactor: Impacts of effluent recirculation on reactor performance

    No full text
    Thermophilic anaerobic digestion is a promising process for high-solid blackwater (BW) treatment due to improved hydrolysis rates, high methanogenesis efficiency, and pathogen removal, when compared with mesophilic treatment. In the present work, the effects of effluent recirculation (i.e., mixing) on thermophilic blackwater treatment were studied. A laboratory-scale thermophilic upflow anaerobic sludge blanket reactor was operated with and without effluent recirculation. The methanogenesis efficiency of the BW treatment increased from 45.0 ± 2.9% when effluent recirculation was applied to 56.7 ± 5.5% without effluent recirculation. Without effluent recirculation, the COD accumulation in the bioreactor was reduced from 17.2 to 3.8% and the effluent volatile fatty acids (VFA) concentration was reduced from 0.64 ± 0.18 to 0.15 ± 0.10 g/L. Further, both acetoclastic and hydrogenotrophic methanogenic activity increased from 101.3 ± 10.8 and 93.9 ± 6.1 to 120.4 ± 9.4 and 118.2 ± 13.2 mg CH4-COD/(gVSS⋅d), respectively, after effluent recirculation was discontinued. The predominant methanogens changed from Methanothermobacter (67%) with effluent recirculation to Methanosarcina (62%) without effluent recirculation. As compared to the effluent recirculation conditions, the enhanced biomethane recovery and treatment performance without effluent recirculation can be attributed to the close proximity of bacteria and archaea groups and the reduced VFA accumulation. Predicted functional gene comparison showed higher prevalence of function for intermediate metabolite transportation (transporters, ATP-binding cassette (ABC) transporters, and two-component system) after discontinuing effluent circulation, which contributed to improved syntrophic propionate oxidation and syntrophic acetate oxidization and enhanced hydrogenotrophic methanogenesis

    Calcium Hypochlorite Pretreatment Enhances Waste-Activated Sludge Degradation during Aerobic Digestion

    No full text
    Conventional activated sludge processes, as the main biological treatment approach for municipal wastewater treatment in centralized wastewater treatment plants (WWTP), generate a large amount of waste-activated sludge (WAS) that needs to be managed before disposal. However, the degradation of WAS is usually limited by the slow hydrolysis rate and low biodegradable rate. Here, an effective pretreatment strategy using calcium hypochlorite treating waste-activated sludge before aerobic digestion was explored. Performance results showed that after the pretreatment with 0.1 g Ca(ClO)2 per gram of total solids (TS), volatile solids (VS) in WAS were reduced by 65.05%±2.68% after 20 days of aerobic digestion, nearly twice the reduction of VS in un-pretreated WAS. The best treatment conditions under tested experiment conditions were 12 h of WAS pretreatment process with 0.1 g Ca(ClO)2 per 1 g TS and 12 days hydraulic retention time (HRT) of aerobic digestion. Kinetic model analysis revealed that the VS reduction of WAS during aerobic digestion was enhanced by the Ca(ClO)2 pretreatment, likely through cell lysis and extracellular polymeric substances (EPS) decomposition. Moreover, microbial community analysis revealed that the relative abundance of certain bacteria (e.g., Xanthomonadaceae, Saprospirales, and Cytophagaceae) increased, which can be attributed to the change of the chemical and biological environment in the aerobic digesters after pretreatment. This study demonstrated the feasibility of applying calcium hypochlorite pretreatment in WAS aerobic digestion to improve sludge digestibility and volume reduction.</p

    Blackwater biomethane recovery using a thermophilic upflow anaerobic sludge blanket reactor: Impacts of effluent recirculation on reactor performance

    No full text
    Thermophilic anaerobic digestion is a promising process for high-solid blackwater (BW) treatment due to improved hydrolysis rates, high methanogenesis efficiency, and pathogen removal, when compared with mesophilic treatment. In the present work, the effects of effluent recirculation (i.e., mixing) on thermophilic blackwater treatment were studied. A laboratory-scale thermophilic upflow anaerobic sludge blanket reactor was operated with and without effluent recirculation. The methanogenesis efficiency of the BW treatment increased from 45.0 ± 2.9% when effluent recirculation was applied to 56.7 ± 5.5% without effluent recirculation. Without effluent recirculation, the COD accumulation in the bioreactor was reduced from 17.2 to 3.8% and the effluent volatile fatty acids (VFA) concentration was reduced from 0.64 ± 0.18 to 0.15 ± 0.10 g/L. Further, both acetoclastic and hydrogenotrophic methanogenic activity increased from 101.3 ± 10.8 and 93.9 ± 6.1 to 120.4 ± 9.4 and 118.2 ± 13.2 mg CH4-COD/(gVSS⋅d), respectively, after effluent recirculation was discontinued. The predominant methanogens changed from Methanothermobacter (67%) with effluent recirculation to Methanosarcina (62%) without effluent recirculation. As compared to the effluent recirculation conditions, the enhanced biomethane recovery and treatment performance without effluent recirculation can be attributed to the close proximity of bacteria and archaea groups and the reduced VFA accumulation. Predicted functional gene comparison showed higher prevalence of function for intermediate metabolite transportation (transporters, ATP-binding cassette (ABC) transporters, and two-component system) after discontinuing effluent circulation, which contributed to improved syntrophic propionate oxidation and syntrophic acetate oxidization and enhanced hydrogenotrophic methanogenesis.</p

    Effluent recirculation weakens the hydrolysis of high-solid content feeds in upflow anaerobic sludge blanket reactors

    No full text
    Effluent recirculation in an upflow anaerobic sludge blanket (UASB) reactor is a commonly used strategy to improve both mixing and upflow velocity of the reactor. This study aimed to assess the impact of effluent recirculation on methane production of UASB reactors treating substrates of different solid contents. Two 2.0 L UASB reactors were operated for 219 d under mesophilic conditions. When the UASB reactors were fed with a high-solid content substrate, effluent recirculation led to significantly reduced methanisation rate (from 47.9% without recirculation to 25.5% with recirculation) and hydrolysis efficiency of particulate organic matter (from 45.5% without recirculation to 22% with recirculation). In comparison to the high-solid content substrate, a low-solid content substrate led to an increase in methanisation rate for both UASB reactors with and without effluent recirculation, but the difference in methane production for the two reactors reduced significantly. Results demonstrated that the lower methane production in the presence of effluent recirculation arose from the inefficient hydrolysis of particulate organic matter, which was mitigated when the reactors were fed with a low-solid content substrate. Turbulence due to effluent recirculation enhanced biomass transport but limited the accessibility of adsorption sites on particulate matter. An insufficient attachment between microorganisms/enzymes and particles could have lowered the hydrolysis efficiency of particulate organic matter.</p

    Metagenomic insights into direct interspecies electron transfer and quorum sensing in blackwater anaerobic digestion reactors supplemented with granular activated carbon

    No full text
    The addition of granular activated carbon (GAC) enhanced the performance of up-flow anaerobic sludge blanket (UASB) reactor treating blackwater at 35 °C. DNA were extracted from the sludge and biofilms attached to GAC and submitted for shotgun sequencing. In addition, the acyl-homoserine lactones (AHLs) were quantified. Diverse partners for direct interspecies electron transfer (DIET) were enriched in the sludge or biofilm (GAC-biofilm) of GAC amended UASB. Pedosphaera parvula, Syntrophus aciditrophicus and Syntrophorhabus aromaticivorans were dominant syntrophs. The analysis for type IV pilus assembly genes further suggested DIET may be functioned through GAC for GAC-biofilm, while through conductive pili for sludge aggregates. AHLs quantification and the analysis for quorum sensing (QS) related genes indicated higher QS activity at the population level was induced by GAC. Overall, the work illustrated the different DIET patterns, and suggested that QS played an important role in controlling the performance in GAC amended USAB
    corecore