19 research outputs found

    Recognition of ESAT-6 Sequences by Antibodies in Sera of Tuberculous Nonhuman Primates

    No full text
    Previous work in our laboratory showed that the ESAT-6 protein of Mycobacterium tuberculosis and Mycobacterium bovis induces strong antibody responses in a large proportion (∼90%) of experimentally or naturally infected nonhuman primates. Here, the antibody response to ESAT-6 in tuberculous monkeys was characterized at the epitope level by measuring antibodies to overlapping, synthetic peptides spanning the ESAT-6 sequence. The antibody response against the COOH-terminal portion of the protein was the strongest in both experimentally and naturally infected animals. Moreover, these antibodies became detectable the earliest during experimental infection, suggesting an ordered expansion of ESAT-6-specific B-cell clones in the course of infection. The data support use of synthetic peptides in lieu of the full-length ESAT-6 protein in diagnostic antibody detection assays

    High-Resolution Peripheral Quantitative Computed Tomography and Finite Element Analysis of Bone Strength at the Distal Radius in Ovariectomized Adult Rhesus Monkey Demonstrate Efficacy of Odanacatib and Differentiation from Alendronate

    No full text
    Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 μg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18 months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs

    High-Resolution Peripheral Quantitative Computed Tomography and Finite Element Analysis of Bone Strength at the Distal Radius in Ovariectomized Adult Rhesus Monkey Demonstrate Efficacy of Odanacatib and Differentiation from Alendronate

    No full text
    Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 μg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18 months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs

    Effect of Odanacatib on Bone Turnover Markers, Bone Density and Geometry of the Spine and Hip of Ovariectomized Monkeys: A Head-to-Head Comparison with Alendronate

    No full text
    Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p \u3c 0.001), spine trabecular vBMD (13.7%, p \u3c 0.001), femoral neck (FN) integral (int) vBMD (9.0%, p \u3c 0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p \u3c 0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p \u3c 0.001) and 21.8% (p \u3c 0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p \u3c 0.001) and 11.3% (p \u3c 0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p \u3c 0.05), and SubTrPF Ct.Th by 7.6% (p \u3c 0.05) and Ct.BMC by 6.2% (p \u3c 0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates
    corecore