272 research outputs found

    BASEL III: Long-term impact on economic performance and fluctuations

    Get PDF
    We assess the long-term economic impact of the new regulatory standards (the Basel III reform), answering the following questions. (1) What is the impact of the reform on long-term economic performance? (2) What is the impact of the reform on economic fluctuations? (3) What is the impact of the adoption of countercyclical capital buffers on economic fluctuations? The main results are the following. (1) Each percentage point increase in the capital ratio causes a median 0.09 percent decline in the level of steady state output, relative to the baseline. The impact of the new liquidity regulation is of a similar order of magnitude, at 0.08 percent. This paper does not estimate the benefits of the new regulation in terms of reduced frequency and severity of financial crisis, analysed in Basel Committee on Banking Supervision (BCBS, 2010b). (2) The reform should dampen output volatility; the magnitude of the effect is heterogeneous across models; the median effect is modest. (3) The adoption of countercyclical capital buffers could have a more sizeable dampening effect on output volatility. These conclusions are fully consistent with those of the reports by the Long-term Economic Impact group (BCBS, 2010b) and Macro Assessment Group (MAG, 2010b).Basel III, countercyclical capital buffers, financial (in)stability, procyclicality, macroprudential policy.

    Contribution of Drosophila DEG/ENaC Genes to Salt Taste

    Get PDF
    AbstractThe ability to detect salt is critical for the survival of terrestrial animals. Based on amiloride-dependent inhibition, the receptors that detect salt have been postulated to be DEG/ENaC channels. We found the Drosophila DEG/ENaC genes Pickpocket11 (ppk11) and Pickpocket19 (ppk19) expressed in the larval taste-sensing terminal organ and in adults on the taste bristles of the labelum, the legs, and the wing margins. When we disrupted PPK11 or PPK19 function, larvae lost their ability to discriminate low concentrations of Na+ or K+ from water, and the electrophysiologic responses to low salt concentrations were attenuated. In both larvae and adults, disrupting PPK11 or PPK19 affected the behavioral response to high salt concentrations. In contrast, the response of larvae to sucrose, pH 3, and several odors remained intact. These results indicate that the DEG/ENaC channels PPK11 and PPK19 play a key role in detecting Na+ and K+ salts

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.

    Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    The EO-ALERT project proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves opti-mised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below 1 minute in some scenarios. The proposed archi-tecture combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper pre-sents the proposed architecture, its performance and hardware, considering two different user scenarios: ship detection and extreme weather nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT concept

    A Novel Satellite Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Alerts

    Get PDF
    The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The proposed data processing chain is based on a novel flight segment architecture that moves EO data processing elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below one minute in realistic scenarios. The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper presents the proposed architecture, its hardware realization for the ground testing in a representative environment and its performance. The architecture’s performance is evaluated considering two different user scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to the end user with a latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO products and alerts to the end user globally, with latency lower than one-point-five minutes

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    Satellite Earth Observation (EO) data is ubiquitously used in many applications, providing basic services to society, such as environment monitoring, emergency management and civilian security. Due to the increasing request of EO products by the market, the classical EO data chain generates a severe bottleneck problem, further exacerbated in constellations. A huge amount of EO raw data generated on-board the satellite must be transferred to ground, slowing down the EO product availability, increasing latency, and hampering the growth of applications in accordance with the increased user demand. This paper provides an overview of the results achieved by the EO-ALERT project (http://eo-alert-h2020.eu/), an H2020 European Union research activity led by DEIMOS Space. EO-ALERT proposes the definition and development of the next-generation EO data processing chain, based on a novel flight segment architecture that moves optimised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering the EO products to the end user with very low latency (quasi-real-time). EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, reaching latencies below 1 minute in some scenarios. The proposed architecture solves the above challenges through a combination of innovations in the on-board elements of the data chain and the communications. Namely, the architecture introduces innovative technological solutions, including on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board data compression and encryption using AI, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. The paper presents the proposed architecture, its performance and hardware, considering two different user scenarios; ship detection and extreme weather observation/nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency lower than five minutes, for both SAR and Optical missions, demonstrating the viability of the EOALERT concept and architecture. The paper also discusses the implementation on an avionics test bench for testing the architecture with real EO data, with the aim of demonstrating that it can meet the requirements of the considered scenarios in terms of detection performance and provides technologies at a high TRL (4-5). When proven, this will open unprecedented opportunities for the exploitation of civil EO products, especially in latency sensitive scenarios, such as disaster management

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out

    Repetition and severity of suicide attempts across the life cycle: a comparison by age group between suicide victims and controls with severe depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suicide attempts have been shown to be less common in older age groups, with repeated attempts generally being more common in younger age groups and severe attempts in older age groups. Consistently, most studies have shown an increased suicide risk after attempts in older age. However, little is known about the predictive value of age on repeated and severe suicide attempts for accomplished suicide. The aim of the present study was to investigate the reduced incidence for initial, repeated, or severe suicide attempts with age in suicide victims and controls by gender.</p> <p>Methods</p> <p>The records of 100 suicide victims and matched controls with severe depression admitted to the Department of Psychiatry, Lund University Hospital, Sweden between 1956 and 1969, were evaluated and the subjects were monitored up to 2006. The occurrence of suicide attempts (first, repeated, or severe, by age group) was analysed for suicide victims and controls, with gender taken into consideration.</p> <p>Results</p> <p>There was a reduced risk for an initial suicide attempt by older age in females (suicide victims and controls) and male controls (but not suicide victims). The risk for repeated suicide attempts appeared to be reduced in the older age groups in female controls as compared to female suicide victims. The risk for severe suicide attempts seemed reduced in the older age groups in female suicide victims. This risk was also reduced in male controls and in male controls compared to male suicide victims.</p> <p>Conclusion</p> <p>In the older age groups repeated attempts appeared to be predictive for suicide in women and severe attempts predictive in men.</p
    corecore