905 research outputs found
Effect of the lattice misfit on the equilibrium shape of strained islands in Volmer-Weber growth
We have studied the effect of the misfit on the equilibrium shape of
three-dimensional pyramidal islands grown on a foreign substrate in the case of
incomplete wetting (Volmer-Weber mode of growth). We have found that tensile
islands have smaller aspect ratios compared with compressed islands owing to
its better adhesion to the substrate. The average strains of consecutive layers
decrease faster with thickness in compressed than in tensile islands. The
strains decrease rapidly with thickness, with the consequence that above a
certain height, the upper layers of the pyramid become practically unstrained
and does not contribute to a further reduction in the upper base. As a result,
the truncated pyramids are not expected to transform into full pyramids. Our
results are in good agreement with experimental observations in different
systems.Comment: 6 pages, 7 figures. Accepted version, minor change
Azathioprine and 6-Mercaptopurine use in the Swiss IBD cohort : adverse effects, causes of discontinuation and risk of "flares" according to 6-TG levels
Background: To characterize and analyze in the Swiss IBD Cohort: a) reported Azathioprine (AZA) and 6-Mercaptopurine (6-MP) adverse effects (AE), b) causes of discontinuation and c) response to therapy according to gastroenterologists' clinical judgment, d) whether level of 6-TGN < 235pmol/8 x108 red blood cells (RBC) is associated with a higher risk of "flare" occurrence.
Methods: Retrospective statistical description, Cox model and Kaplan-Meier survival estimation.
Results: 1499 patients with Crohn's Disease (CD) and 1066 with Ulcerative colitis (UC)
Isokinetic muscle strengthening after acquired cerebral damage: A literature review
AbstractObjectiveIsokinetic strengthening is a rehabilitation technique rarely used in stroke patients. However, the potential benefits of force and endurance training in this population are strongly suspected.MethodThis literature review synthesizes the results of clinical trials on this topic. The research was conducted on PubMed, using “Stroke”, “rehabilitation”, “isokinetic”, “upper limb” and “training” as keywords.ResultsSeventeen studies focusing on the use of isokinetics in assessment or rehabilitation (six studies) following stroke were reviewed. For the lower limb, muscle strength and walking ability improved after isokinetic rehabilitation programs. For the upper limb, the only two studies found in the literature suggest improvement in the strength of the trained muscles, of grip force, of the Fugl-Meyer motor score and of global functional capacities. This review does not reveal any consensus on the protocols to be implemented: type of muscle contraction, velocities….ConclusionWhile isokinetic strengthening has not proven its efficiency in rehabilitation of the upper limb following stroke, its interest with regard to rehabilitation of the lower limbs has been recognized. Randomized controlled trials in this field are necessary to confirm its efficiency, especially concerning upper arm rehabilitation
The CXCR4/CXCR7/CXCL12 Axis Is Involved in a Secondary but Complex Control of Neuroblastoma Metastatic Cell Homing.
Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets
Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials
A simplified tight-binding description of the electronic structure is often
necessary for complex studies of surfaces of transition metal compounds. This
requires a self-consistent parametrization of the charge redistribution, which
is not obvious for late transition series elements (such as Pd, Cu, Au), for
which not only d but also s-p electrons have to be taken into account. We show
here, with the help of an ab initio FP-LMTO approach, that for these elements
the electronic charge is unchanged from bulk to the surface, not only per site
but also per orbital. This implies different level shifts for each orbital in
order to achieve this orbital neutrality rule. Our results invalidate any
neutrality rule which would allow charge redistribution between orbitals to
ensure a common rigid shift for all of them. Moreover, in the case of Pd, the
power law which governs the variation of band energy with respect to
coordination number, is found to differ significantly from the usual
tight-binding square root.Comment: 6 pages, 2 figures, Latex; Phys.Rev. B 56 (1997
TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth.
The embryonic transcription factors TWIST1/2 are frequently overexpressed in cancer, acting as multifunctional oncogenes. Here we investigate their role in neuroblastoma (NB), a heterogeneous childhood malignancy ranging from spontaneous regression to dismal outcomes despite multimodal therapy. We first reveal the association of TWIST1 expression with poor survival and metastasis in primary NB, while TWIST2 correlates with good prognosis. Secondly, suppression of TWIST1 by CRISPR/Cas9 results in a reduction of tumor growth and metastasis colonization in immunocompromised mice. Moreover, TWIST1 knockout tumors display a less aggressive cellular morphology and a reduced disruption of the extracellular matrix (ECM) reticulin network. Additionally, we identify a TWIST1-mediated transcriptional program associated with dismal outcome in NB and involved in the control of pathways mainly linked to the signaling, migration, adhesion, the organization of the ECM, and the tumor cells versus tumor stroma crosstalk. Taken together, our findings confirm TWIST1 as promising therapeutic target in NB
Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells.
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification.
Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC-1 parental cells in nude mice generated various tumor types, such as NB, osteo/chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro
- …