7 research outputs found

    OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients

    Full text link
    Optical coherence tomography angiography (OCT-A) represents the most recent tool in ophthalmic imaging. It allows for a non-invasive, depth-selective and quantitative visualization of blood flow in central retinal vessels and it has an enormous diagnostic potential not only in ophthalmology but also with regards to neurologic and systemic diseases. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary vascular small-vessel disease caused by Notch3 mutations and represents the most common form of hereditary stroke disorder. In this study, CADASIL patients prospectively underwent OCT-A imaging to evaluate retinal and choriocapillaris blood flow as well as blood flow at the optic nerve head. The vessel density of the macular region and the size of the foveal avascular zone in the superficial and deep retinal plexus were determined as well as the vessel density at the optic nerve head and in the choriocapillaris. Additionally, cerebral magnetic resonance images were evaluated. The main finding was that vessel density of the deep retinal plexus was significantly decreased in CADASIL patients compared to healthy controls which may reflect pericyte dysfunction in retinal capillaries

    COVID-19

    Full text link
    BACKGROUND AND PURPOSE The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is occasionally associated with manifold diseases of the central nervous system (CNS). We sought to present the neuroimaging features of such CNS involvement. In addition, we sought to identify typical neuroimaging patterns that could indicate possible COVID-19-associated neurological manifestations. METHODS In this systematic literature review, typical neuroimaging features of cerebrovascular diseases and inflammatory processes associated with COVID-19 were analyzed. Reports presenting individual patient data were included in further quantitative analysis with descriptive statistics. RESULTS We identified 115 studies reporting a total of 954 COVID-19 patients with associated neurological manifestations and neuroimaging alterations. A total of 95 (82.6%) of the identified studies were single case reports or case series, whereas 660 (69.2%) of the reported cases included individual information and were thus included in descriptive statistical analysis. Ischemia with neuroimaging patterns of large vessel occlusion event was revealed in 59.9% of ischemic stroke patients, whereas 69.2% of patients with intracerebral hemorrhage exhibited bleeding in a location that was not associated with hypertension. Callosal and/or juxtacortical location was identified in 58.7% of cerebral microbleed positive images. Features of hemorrhagic necrotizing encephalitis were detected in 28.8% of patients with meningo-/encephalitis. CONCLUSIONS Manifold CNS involvement is increasingly reported in COVID-19 patients. Typical and atypical neuroimaging features have been observed in some disease entities, so that familiarity with these imaging patterns appears reasonable and may assist clinicians in the differential diagnosis of COVID-19 CNS manifestations

    Can we predict cognitive decline after initial diagnosis of multiple sclerosis? Results from the German National early MS cohort (KKNMS)

    Full text link
    BackgroundCognitive impairment (CI) affects approximately one-third of the patients with early multiple sclerosis (MS) and clinically isolated syndrome (CIS). Little is known about factors predicting CI and progression after initial diagnosis.MethodsNeuropsychological screening data from baseline and 1-year follow-up of a prospective multicenter cohort study (NationMS) involving 1123 patients with newly diagnosed MS or CIS were analyzed. Employing linear multilevel models, we investigated whether demographic, clinical and conventional MRI markers at baseline were predictive for CI and longitudinal cognitive changes.ResultsAt baseline, 22% of patients had CI (impairment in 2 cognitive domains) with highest frequencies and severity in processing speed and executive functions. Demographics (fewer years of academic education, higher age, male sex), clinical (EDSS, depressive symptoms) but no conventional MRI characteristics were linked to baseline CI. At follow-up, only 14% of patients showed CI suggesting effects of retesting. Neither baseline characteristics nor initiation of treatment between baseline and follow-up was able to predict cognitive changes within the follow-up period of 1 year.ConclusionsIdentification of risk factors for short-term cognitive change in newly diagnosed MS or CIS is insufficient using only demographic, clinical and conventional MRI data. Change-sensitive, re-test reliable cognitive tests and more sophisticated predictors need to be employed in future clinical trials and cohort studies of early-stage MS to improve prediction
    corecore