14 research outputs found

    Lower rate of genomic variation identified in the trans-membrane domain of monoamine sub-class of Human G-Protein Coupled Receptors: The Human GPCR-DB Database

    Get PDF
    BACKGROUND: We have surveyed, compiled and annotated nucleotide variations in 338 human 7-transmembrane receptors (G-protein coupled receptors). In a sample of 32 chromosomes from a Nordic population, we attempted to determine the allele frequencies of 80 non-synonymous SNPs, and found 20 novel polymorphic markers. GPCR receptors of physiological and clinical importance were prioritized for statistical analysis. Natural variation and rare mutation information were merged and presented online in the Human GPCR-DB database . RESULTS: The average number of SNPs per 1000 bases of exonic sequence was found to be twice the average number of SNPs per Kilobase of intronic regions (2.2 versus 1.0). Of the 338 genes, 111 were single exon genes, that is, were intronless. The average number of exonic-SNPs per single-exon gene was 3.5 (n = 395) while that for multi-exon genes was 0.8 (n = 1176). The average number of variations within the different protein domain (N-terminus, internal- and external-loops, trans-membrane region, C-terminus) indicates a lower rate of variation in the trans-membrane region of Monoamine GPCRs, as compared to Chemokine- and Peptide-receptor sub-classes of GPCRs. CONCLUSIONS: Single-exon GPCRs on average have approximately three times the number of SNPs as compared to GPCRs with introns. Among various functional classes of GPCRs, Monoamine GPRCs have lower number of natural variations within the trans-membrane domain indicating evolutionary selection against non-synonymous changes within the membrane-localizing domain of this sub-class of GPCRs

    The influence of 5 ' codon context on translation termination in Saccharomyces cerevisiae

    No full text
    Translation termination in vivo was studied in the yeast Saccharomyces cerevisiae using a translation-assay system. Codon changes that were made at position -2-relative to the stop codon, gave a 3.5-fold effect on termination in a release-factor-defective (sup45) mutant strain, in line with the effect observed in a wild-type strain. The influence of the -2 codon could be correlated to the charge of the corresponding amino acid residue in the nascent peptide; an acidic residue favoring efficient termination. Thus, the C-terminal end of the nascent peptide influences translation termination both in the bacterium Escherichia coil and to a lesser extent in the yeast S. cerevisiae. However, the sensitivity to the charge of the penultimate amino acid is reversed when the E. coli and S. cerevisiae are compared. Changing -1 (P-site) codons in yeast gave a 10-fold difference in effect on the efficiency of termination. This effect could not be related to any property of the encoded last amino acid in the nascent peptide. Iso-codons read by the same tRNA (AAA/G, GAA/G) gave similar readthrough values. Codons for glutamine (CAA/G), glutamic acid (GAA/G) and isoleucine (AUA/C) that are read by different isoaccepting tRNAs are associated with an approximately twofold difference in each case in termination efficiency. This suggests that the P-site tRNAis able to influence termination at UGAC in yeast

    Identification of functional SNPs in the 5-prime flanking sequences of human genes

    Get PDF
    Background: Over 4 million single nucleotide polymorphisms (SNPs) are currently reported to exist within the human genome. Only a small fraction of these SNPs alter gene function or expression, and therefore might be associated with a cell phenotype. These functional SNPs are consequently important in understanding human health. Information related to functional SNPs in candidate disease genes is critical for cost effective genetic association studies, which attempt to understand the genetics of complex diseases like diabetes, Alzheimer's, etc. Robust methods for the identification of functional SNPs are therefore crucial. We report one such experimental approach. Results: Sequence conserved between mouse and human genomes, within 5 kilobases of the 5-prime end of 176 GPCR genes, were screened for SNPs. Sequences flanking these SNPs were scored for transcription factor binding sites. Allelic pairs resulting in a significant score difference were predicted to influence the binding of transcription factors (TFs). Ten such SNPs were selected for mobility shift assays (EMSA), resulting in 7 of them exhibiting a reproducible shift. The full-length promoter regions with 4 of the 7 SNPs were cloned in a Luciferase based plasmid reporter system. Two out of the 4 SNPs exhibited differential promoter activity in several human cell lines. Conclusions: We propose a method for effective selection of functional, regulatory SNPs that are located in evolutionary conserved 5-prime flanking regions (5'-FR) regions of human genes and influence the activity of the transcriptional regulatory region. Some SNPs behave differently in different cell types.Medicine, Faculty ofMolecular Medicine and Therapeutics, Centre forNon UBCReviewedFacult
    corecore