166 research outputs found

    Overconfident, resentful, and misinformed: How racial animus motivates confidence in false beliefs

    Get PDF
    Many Americans not only hold misinformed beliefs about policy-relevant topics (e.g., climate change, public health) but hold those views with high degrees of confidence in their factual accuracy. Epistemic overconfidence – an application of the Dunning Kruger Effect (DKE, or “ignorance of one’s own ignorance” – is politically consequential, as misinformed individuals who hold those views with high degrees of confidence may be especially likely to oppose evidence-based policies and resist attitude change. Yet, its psychological origins – particularly in application to misinformation endorsement – are not well understood. In this paper, we propose that racial animus plays a key psychological role in motivating Americans to express confidence in misinformed beliefs. Using nationally representative survey data from the American National Election Study, we find that racial resentment plays a strong role in leading Americans to hold confidently misinformed views about racialized policy issues (e.g., the causes of anthropogenic climate change, the origins of the COVID-19 pandemic), but not on less-racialized issues (e.g., MMR vaccine safety). We conclude by discussing how our work underscores the often-overlooked importance of intergroup attitudes in shaping DKE, and helps resolve theoretical tensions in the study of misinformation acceptance. Objective We examine the role of racial resentment in motivating Americans to express confidence in misinformed beliefs on racialized scientific issues. Methods We study survey data from the 2020 American National Election Study. We examine respondents’ endorsement of misinformation on different scientific issues and their reported confidence in these views. Results We find that racial resentment plays a strong role in leading Americans to hold confidently misinformed views about highly racialized policy issues (e.g., the occurrence of anthropogenic climate change or the origins of the COVID-19 pandemic), but not on less racialized issues (e.g., childhood vaccine safety). Conclusions Our work underscores the often-overlooked importance of intergroup attitudes in shaping overconfidence and helps resolve theoretical tensions in the study of misinformation acceptance

    Current Patterns of Macroalgal Diversity and Biomass in Northern Hemisphere Rocky Shores

    Get PDF
    Latitudinal gradients in species abundance and diversity have been postulated for nearshore taxa but few analyses have been done over sufficiently broad geographic scales incorporating various nearshore depth strata to empirically test these gradients. Typically, gradients are based on literature reviews and species lists and have focused on alpha diversity across the entire nearshore zone. No studies have used a standardized protocol in the field to examine species density among sites across a large spatial scale while also focusing on particular depth strata. The present research used field collected samples in the northern hemisphere to explore the relationships between macroalgal species density and biomass along intertidal heights and subtidal depths and latitude. Results indicated no overall correlations between either estimates of species density or biomass with latitude, although the highest numbers of both were found at mid-latitudes. However, when strata were examined separately, significant positive correlations were found for both species numbers and biomass at particular strata, namely the intertidal ones. While the data presented in this paper have some limitations, we show that latitudinal macroalgal trends in species density and biomass do exist for some strata in the northern hemisphere with more taxa and biomass at higher latitudes

    Unilateral versus coordinated effects:comparing the impact on consumer welfare of alternative merger outcomes

    Get PDF
    The nature of tacitly collusive behaviour often makes coordination unstable, and this may result in periods of breakdown, during which consumers benet from reduced prices. This is allowed for by adding demand uncertainty to the Compte et al. (2002) model of tacit collusion amongst asymmetric rms. Breakdowns occur when a rm cannot exclude the possibility of a deviation by a rival. It is then possible that an outcome with collusive behaviour, subject to long/frequent break downs, can improve consumer welfare compared to an alternative with sustained unilateral conduct. This is illustrated by re-examining the Nestle/Perrier merger analyzed by Compte et al., but now also taking into account the potential for welfare losses arising from unilateral behaviour

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Highly Significant Detection of X-Ray Polarization from the Brightest Accreting Neutron Star Sco X-1

    Get PDF
    The Imaging X-ray Polarimetry Explorer measured with high significance the X-ray polarization of the brightest Z-source, Sco X-1, resulting in the nominal 2–8 keV energy band in a polarization degree of 1.0% ± 0.2% and a polarization angle of 8° ± 6° at a 90% confidence level. This observation was strictly simultaneous with observations performed by NICER, NuSTAR, and Insight-HXMT, which allowed for a precise characterization of its broadband spectrum from soft to hard X-rays. The source has been observed mainly in its soft state, with short periods of flaring. We also observed low-frequency quasiperiodic oscillations. From a spectropolarimetric analysis, we associate a polarization to the accretion disk at <3.2% at 90% confidence level, compatible with expectations for an electron scattering dominated optically thick atmosphere at the Sco X-1 inclination of ∼44°; for the higher-energy Comptonized component, we obtain a polarization of 1.3% ± 0.4%, in agreement with expectations for a slab of Thomson optical depth of ∼7 and an electron temperature of ∼3 keV. A polarization rotation with respect to previous observations by OSO-8 and PolarLight, and also with respect to the radio-jet position angle, is observed. This result may indicate a variation of the polarization with the source state that can be related to relativistic precession or a change in the corona geometry with the accretion flow

    First detection of X-ray polarization from the accreting neutron star 4U 1820-303

    Get PDF
    This paper reports the first detection of polarization in the X-rays for atoll-source 4U 1820-303, obtained with the Imaging X-ray Polarimetry Explorer (IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements were also performed in the radio with the Australia Telescope Compact Array (ATCA). The IXPE observations of 4U 1820-303 were coordinated with Swift-XRT, NICER, and NuSTAR aiming to obtain an accurate X-ray spectral model covering a broad energy interval. The source shows a significant polarization above 4 keV, with a polarization degree of 2.0(0.5)% and a polarization angle of -55(7) deg in the 4-7 keV energy range, and a polarization degree of 10(2)% and a polarization angle of -67(7) deg in the 7-8 keV energy bin. This polarization also shows a clear energy trend with polarization degree increasing with energy and a hint for a position-angle change of about 90 deg at 96% CL around 4 keV. The spectro-polarimetric fit indicates that the accretion disk is polarized orthogonally to the hard spectral component, which is presumably produced in the boundary/spreading layer. We do not detect linear polarization from the radio counterpart, with a 99.97% upper limit of 50% at 7.25 GHz

    Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions

    Full text link
    Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.Comment: 60 pages, 14 figures; comments welcom
    corecore