47 research outputs found
Anomalous Hopping Exponents of Ultrathin Films of Metals
The temperature dependence of the resistance R(T) of ultrathin
quench-condensed films of Ag, Bi, Pb and Pd has been investigated. In the most
resistive films, R(T)=Roexp(To/T)^x, where x=0.75. Surprisingly, the exponent x
was found to be constant for a wide range of Ro and To in all four materials,
possibly implying a consistent underlying conduction mechanism. The results are
discussed in terms of several different models of hopping conduction.Comment: 6 pages, 5 figure
Melting as a String-Mediated Phase Transition
We present a theory of the melting of elemental solids as a
dislocation-mediated phase transition. We model dislocations near melt as
non-interacting closed strings on a lattice. In this framework we derive simple
expressions for the melting temperature and latent heat of fusion that depend
on the dislocation density at melt. We use experimental data for more than half
the elements in the Periodic Table to determine the dislocation density from
both relations. Melting temperatures yield a dislocation density of (0.61\pm
0.20) b^{-2}, in good agreement with the density obtained from latent heats,
(0.66\pm 0.11) b^{-2}, where b is the length of the smallest
perfect-dislocation Burgers vector. Melting corresponds to the situation where,
on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.
Changes in Photon Flux Can Induce Stomatal Patchiness
Images of chlorophyll fluorescence were used to detect the occurrence of stomatal patchiness in leaves from eight species under variable photon flux conditions. Pronounced stomatal patchiness was induced within 5–10 min after PFD was changed from intermediate (∼450 μmol quanta m−2 s−1) to low (∼150 μmol quanta m−2 s−1) levels. This effect was completely reversible by returning PFD to intermediate levels. The pattern of heterogeneous fluorescence for each leaf was usually similar during repeated applications of medium and low PFD. In three species, stomatal patchiness could only be induced in slightly water-stressed plants. Leaves of more severely water-stressed Xanthium strumarium plants in low air humidity exhibited oscillations in fluorescence that corresponded with oscillatory changes in leaf diffusion conductance for water vapour. Stomatal patchiness was also induced by illuminating dark-adapted leaves with low PFD (below 200–300 μmol quanta m−2 s−1). Infiltration of leaves with distilled water showed that heterogeneous chlorophyll fluorescence was caused by changes in stomatal apertures