64 research outputs found
Origin of artificial electrodynamics in three-dimensional bosonic models
Several simple models of strongly correlated bosons on three-dimensional lattices have been shown to possess exotic fractionalized Mott insulating phases with a gapless "photon" excitation. In this paper we show how to view the physics of this "Coulomb" state in terms of the excitations of proximate superfluid. We argue for the presence of ordered vortex cores with a broken discrete symmetry in the nearby superfluid phase and that proliferating these degenerate but distinct vortices with equal amplitudes produces the Coulomb phase. This provides a simple physical description of the origin of the exotic excitations of the Coulomb state. The physical picture is formalized by means of a dual description of three-dimensional bosonic systems in terms of fluctuating quantum mechanical vortex loops. Such a dual formulation is extensively developed. It is shown how the Coulomb phase (as well as various other familiar phases) of three-dimensional bosonic systems may be described in this vortex loop theory. For bosons at half-filling and the closely related system of spin-1/2 quantum magnets on a cubic lattice, fractionalized phases as well as bond- or "box"-ordered states are possible. The latter are analyzed by an extension of techniques previously developed in two spatial dimensions. The relation between these "confining" phases with broken translational symmetry and the fractionalized Coulomb phase is exposed
Study of the triangular lattice tV model near x=1/3
We study extended Hubbard model on a triangular lattice near doping ,
which may be relevant for the recently discovered superconductor NaCoOHO. By generalizing this model to fermionic species, we
formulate a meanfield description in the limit of large . In meanfield, we
find two possible phases: a renormalized Fermi liquid and a \rt3rt3 charge
density wave state. The transition between the two phases is driven by
increasing the nearest neighbor repulsion and is found to be first order for
doping , but occurs close to the point of the local instability of the
uniform liquid. We also study fluctuations about the uniform meanfield state in
a systematic 1/N expansion, focusing on the residual interaction of
quasiparticles and possible superconducting instabilities due to this
interaction. Upon moving towards the CDW instability, the increasing charge
fluctuations favor a particular -wave triplet state. (This state was
recently discussed by Tanakaet al, cond-mat/0311266). We also report a direct
Gutzwiller wavefunction study of the spin-1/2 model.Comment: 9 pages, 5 figure
Scalar Aharonov-Bohm effect with longitudinally polarized neutrons
In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper
Exotic order in simple models of bosonic systems
We show that simple Bose Hubbard models with unfrustrated hopping and short
range two-body repulsive interactions can support stable fractionalized phases
in two and higher dimensions, and in zero magnetic field. The simplicity of the
constructed models advances the possibility of a controlled experimental
realization and novel applications of such unconventional states.Comment: 4 pages, 4 figure
Novel phase diagram of superconductor NaxCoO2-yH2O in a 75 % relative humidity
We succeeded in synthesizing the powder samples of bilayer-hydrate sodium
cobalt oxide superconductors NaxCoO2-yH2O with Tc = 0 ~ 4.6 K by systematically
changing the keeping duration in a 75 % relative humidity atmosphere after
intercalation of water molecules. From the magnetic measurements, we found that
the one-day duration sample does not show any superconductivity down to 1.8 K,
and that the samples kept for 2 ~ 7 days show superconductivity, in which Tc
increases up to 4.6 K with increasing the duration. Tc and the superconducting
volume fraction are almost invariant between 7 days and 1month duration. The
59Co NQR spectra indicate a systematic change in the local charge distribution
on the CoO2 plane with change in duration.Comment: 4 pages, 5 figures, submitted to Journal of the Physical Society of
Japa
Bosonic model with fractionalization
Bosonic model with unfrustrated hopping and short-range repulsive interaction
is constructed that realizes fractionalized insulator phase in two
dimensions and in zero magnetic field. Such phase is characterized as having
gapped charged excitations that carry fractional electrical charge 1/3 and also
gapped vortices above the topologically ordered ground state.Comment: 7 pages, 3 figure
Spin Reduction Transition in Spin-3/2 Random Heisenberg Chains
Random spin-3/2 antiferromagnetic Heisenberg chains are investigated using an
asymptotically exact renormalization group. Randomness is found to induce a
quantum phase transition between two random-singlet phases. In the strong
randomness phase the effective spins at low energies are S_eff=3/2, while in
the weak randomness phase the effective spins are S_eff=1/2. Separating them is
a quantum critical point near which there is a non-trivial mixture of S=1/2,
S=1, and S=3/2 effective spins at low temperatures.Comment: 4 pages, 3 figures. Typos correcte
Possible effects of charge frustration in NaCoO: bandwidth suppression, charge orders and resurrected RVB superconductivity
Charge frustration due to further neighbor Coulomb repulsion can have
dramatic effects on the electronic properties of NaCoO in the full
doping range. It can significantly reduce the effective mobility of the charge
carriers, leading to a low degeneracy temperature . Such
strongly renormalized Fermi liquid has rather unusual properties--from the
point of view of the ordinary metals with --but similar to
the properties that are actually observed in the NaCoO system. For
example, we show that the anomalous thermopower and Hall effect observed in
NaCoO may be interpreted along these lines. If the repulsion is
strong, it can also lead to charge order; nevertheless, away from the
commensurate dopings, the configurational constraints allow some mobility for
the charge carriers, i.e., there remains some ``metallic'' component. Finally,
the particularly strong bandwidth suppression around the commensurate
can help resurrect the RVB superconductivity, which would otherwise not be
expected near this high doping. These suggestions are demonstrated specifically
for a -like model with an additional nearest neighbor repulsion.Comment: 15 pages, 17 figure
Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice
There is growing evidence from both experiment and numerical studies that low
half-odd integer quantum spins on a kagome lattice with predominant
antiferromagnetic near neighbor interactions do not order magnetically or break
lattice symmetries even at temperatures much lower than the exchange
interaction strength. Moreover, there appear to be a plethora of low energy
excitations, predominantly singlets but also spin carrying, which suggest that
the putative underlying quantum spin liquid is a gapless ``critical spin
liquid'' rather than a gapped spin liquid with topological order. Here, we
develop an effective field theory approach for the spin-1/2 Heisenberg model
with easy-plane anisotropy on the kagome lattice. By employing a vortex duality
transformation, followed by a fermionization and flux-smearing, we obtain
access to a gapless yet stable critical spin liquid phase, which is described
by (2+1)-dimensional quantum electrodynamics (QED) with an emergent
flavor symmetry. The specific heat, thermal conductivity, and
dynamical structure factor are extracted from the effective field theory, and
contrasted with other theoretical approaches to the kagome antiferromagnet.Comment: 14 pages, 8 figure
Griffiths Effects in Random Heisenberg Antiferromagnetic S=1 Chains
I consider the effects of enforced dimerization on random Heisenberg
antiferromagnetic S=1 chains. I argue for the existence of novel Griffiths
phases characterized by {\em two independent dynamical exponents} that vary
continuously in these phases; one of the exponents controls the density of
spin-1/2 degrees of freedom in the low-energy effective Hamiltonian, while the
other controls the corresponding density of spin-1 degrees of freedom.
Moreover, in one of these Griffiths phases, the system has very different low
temperature behavior in two different parts of the phase which are separated
from each other by a sharply defined crossover line; on one side of this
crossover line, the system `looks' like a S=1 chain at low energies, while on
the other side, it is best thought of as a chain. A strong-disorder RG
analysis makes it possible to analytically obtain detailed information about
the low temperature behavior of physical observables such as the susceptibility
and the specific heat, as well as identify an experimentally accessible
signature of this novel crossover.Comment: 16 pages, two-column PRB format; 5 figure
- …