17 research outputs found

    Boron Compounds for Neutron Capture Therapy in the Treatment of Brain Tumors

    Get PDF
    Boron neutron capture therapy (BNCT), which uses the capture reaction between neutrons and boron-10, an isotope of boron, is rapidly gaining interest. The reason for this is the successful development of a compact accelerator-type neutron generator that can be installed in a hospital and launched into the clinical setting. BNCT, which provides selective radiotherapeutic effects at the cellular level, is expected to be effective against invasive cancer. We have been investigating BNCT applications in various types of malignant brain tumors, especially malignant gliomas, as medical applications. Recently, we have conducted clinical trials using the developed accelerator neutron source. Research on pharmaceutical applications of compounds that transport boron to cancer cells is expected to be in even greater need. Currently, the only boron agent used in cancer therapy is BPA (Borofaran 10B), which takes advantage of the demand for essential amino acids, but the research and development of boron agents are an absolutely key technology to further improve the precision of this treatment modality. This chapter summarizes and discusses the results of BNCT in the treatment of brain tumors

    Skull Bone Regeneration Using Chitosan–Siloxane Porous Hybrids—Long-Term Implantation

    No full text
    Burr holes in craniotomy are not self-repairing bone defects. To regenerate new bone at the sites of these defects, a good scaffold is required. Biodegradable hybrids including silica or siloxane networks have been investigated as bone tissue scaffolds. This study examined skull bone regeneration using chitosan-siloxane hybrids after long-term implantation (two and three years). After implantation of the hybrids, the surrounding cells migrated and formed fibrous tissues and blood vessels. Then, bone formation occurred from the surrounding blood vessels. Addition of calcium ions and coating with hydroxyapatite improved bone regeneration. Finally, the regenerated tissue area became smaller than the initial hole, and some areas changed to completed bone tissues

    Usefulness of fast imaging employing steady-state acquisition magnetic resonance images for appropriate fenestration in a recurrent convexity arachnoid cyst

    Get PDF
    It is difficult for convexity arachnoid cysts to determine where the cyst should be fenestrated because there is no large cistern around the cyst. We successfully fenestrated a recurrent convexity arachnoid cyst during a second surgery because of the information provided by preoperative fast imaging employing steady-state acquisition (FIESTA) magnetic resonance (MR) imaging. A 19-year-old woman experienced a progressive headache and was diagnosed with an arachnoid cyst in the right temporal lobe, for which she underwent membranectomy. However, the cyst was gradually enlarging for 2 years after the first surgery and the patient’s headache recurred. FIESTA MR images revealed the membrane between the cyst and the distal sylvian fissure. This membrane was dissected and resected to connect to the cistern in the second surgery

    Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review

    No full text
    Abstract Introduction This systematic review aims to elucidate the diagnostic accuracy of radiological examinations to distinguish between brain radiation necrosis (BRN) and tumor progression (TP). Methods We divided diagnostic approaches into two categories as follows—conventional radiological imaging [computed tomography (CT) and magnetic resonance imaging (MRI): review question (RQ) 1] and nuclear medicine studies [single photon emission CT (SPECT) and positron emission tomography (PET): RQ2]—and queried. Our librarians conducted a comprehensive systematic search on PubMed, the Cochrane Library, and the Japan Medical Abstracts Society up to March 2015. We estimated summary statistics using the bivariate random effects model and performed subanalysis by dividing into tumor types—gliomas and metastatic brain tumors. Results Of 188 and 239 records extracted from the database, we included 20 and 26 studies in the analysis for RQ1 and RQ2, respectively. In RQ1, we used gadolinium (Gd)-enhanced MRI, diffusion-weighted image, MR spectroscopy, and perfusion CT/MRI to diagnose BRN in RQ1. In RQ2, 201Tl-, 99mTc-MIBI-, and 99mTc-GHA-SPECT, and 18F-FDG-, 11C-MET-, 18F-FET-, and 18F-BPA-PET were used. In meta-analysis, Gd-enhanced MRI exhibited the lowest sensitivity [63%; 95% confidence interval (CI): 28–89%] and diagnostic odds ratio (DOR), and combined multiple imaging studies displayed the highest sensitivity (96%; 95% CI: 83–99%) and DOR among all imaging studies. In subanalysis for gliomas, Gd-enhanced MRI and 18F-FDG-PET revealed low DOR. Conversely, we observed no difference in DOR among radiological imaging in metastatic brain tumors. However, diagnostic parameters and study subjects often differed among the same imaging studies. All studies enrolled a small number of patients, and only 10 were prospective studies without randomization. Conclusions Differentiating BRN from TP using Gd-enhanced MRI and 18F-FDG-PET is challenging for patients with glioma. Conversely, BRN could be diagnosed by any radiological imaging in metastatic brain tumors. This review suggests that combined multiparametric imaging, including lesional metabolism and blood flow, could enhance diagnostic accuracy, compared with a single imaging study. Nevertheless, a substantial risk of bias and indirectness of reviewed studies hindered drawing firm conclusion about the best imaging technique for diagnosing BRN
    corecore