659 research outputs found
Theory of phonon-assisted "forbidden" optical transitions in spin-gapped systems
We consider the absorption of light with emission of one S(tot)=1 magnetic
excitation in systems with a spin gap induced by quantum fluctuations. We argue
that an electric dipole transition is allowed on the condition that a virtual
phonon instantaneously breaks the inversion symmetry. We derive an effective
operator for the transition and argue that the proposed theory explains the
polarized experiments in CuGeO(3) and SrCu(2)[BO(3)](2).Comment: 9 pages, 4 figure
ESR investigation on the Breather mode and the Spinon-Breather dynamical crossover in Cu Benzoate
A new elementary-excitation, the so called "breather excitation", is observed
directly by millimeter-submillimeter wave electron spin resonance (ESR) in the
Heisenberg quantum spin-chain Cu benzoate, in which a field-induced gap is
found recently by specific heat and neutron scattering measurements. Distinct
anomalies were found in line width and in resonance field around the "dynamical
crossover" regime between the gap-less spinon-regime and the gapped
breather-regime. When the temperature becomes sufficiently lower than the
energy gap, a new ESR-line with very narrow line-width is found, which is the
manifestation of the breather excitation. The non-linear field dependence of
the resonance field agrees well with the theoretical formula of the first
breather-excitation proposed by Oshikawa and Affleck. The present work
establishes experimentally for the first time that a sine-Gordon model is
applicable to explain spin dynamics in a S=1/2 Heisenberg spin chain subjected
to staggered field even in high fields.Comment: Revtex, 4 pages, 4 figures, submitted to Phys. Rev. Let
Coherent radiation by molecular magnets
The possibility of coherent radiation by molecular magnets is investigated.
It is shown that to realize the coherent radiation, it is necessary to couple
the considered sample to a resonant electric circuit. A theory for describing
this phenomenon is developed, based on a realistic microscopic Hamiltonian,
including the Zeeman terms, single-site anisotropy, and dipole interactions.
The role of hyperfine interactions between molecular and nuclear spins is
studied. Numerical solutions of the spin evolution equations are presented.Comment: Latex file, 11 pages, 3 figure
Magnetic structures of RbCuCl_3 in a transverse field
A recent high-field magnetization experiment found a phase transition of
unknown character in the layered, frustrated antiferromagnet RbCuCl_3, in a
transverse field (in the layers). Motivated by these results, we have examined
the magnetic structures predicted by a model of RbCuCl_3, using the classical
approximation. At small fields, we obtain the structure already known to be
optimal, an incommensurate (IC) spiral with wave vector q in the layers. At
higher fields, we find a staircase of long-period commensurate (C) phases
(separated initially by the low-field IC phase), then two narrow IC phases,
then a fourth IC phase (also with intermediate C phases), and finally the
ferromagnetically aligned phase at the saturation field H_S. The
three-sublattice C states familiar from the theory of the triangular
antiferromagnet are never optimal. The C phases and the two intermediate IC
phases were previously unknown in this context. The magnetization is
discontinuous at a field \approx 0.4H_S, in qualitative agreement with
experiment, though we find much fine structure not reported.Comment: 9 pages, 8 figure
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
Quantum Fluctuation-Induced Phase Transition in S=1/2 XY-like Heisenberg Antiferromagnets on the Triangular Lattice
The selection of the ground state among nearly degenerate states due to
quantum fluctuations is studied for the S=1/2 XY-like Heisenberg
antiferromagnets on the triangular lattice in the magnetic field applied along
the hard axis, which was first pointed out by Nikuni and Shiba. We find that
the selected ground state sensitively depends on the degree of the anisotropy
and the magnitude of the magnetic field. This dependence is similar to that in
the corresponding classical model at finite temperatures where various types of
field induced phases appear due to the entropy effect. It is also found that
the similarity of the selected states in the classical and quantum models are
not the case in a two-leg ladder lattice, although the lattice consists of
triangles locally and the ground state of this lattice in the classical case is
the same as that of the triangular lattice.Comment: 15 pages, 35 figure
Anomalous Spin Dynamics observed by High Frequency ESR in Honeycomb Lattice Antiferromagnet InCu2/3V1/3O3
High-frequency ESR results on the S=1/2 Heisenberg hexagonal antiferromagnet
InCu2/3V1/3O3 are reported. This compound appears to be a rare model substance
for the honeycomb lattice antiferromagnet with very weak interlayer couplings.
The high-temperature magnetic susceptibility can be interpreted by the S=1/2
honeycomb lattice antiferromagnet, and it shows a magnetic-order-like anomaly
at TN=38 K. Although, the resonance field of our high-frequency ESR shows the
typical behavior of the antiferromagnetic resonance, the linewidth of our
high-frequency ESR continues to increase below TN, while it tends to decrease
as the temperature in a conventional three-dimensional antiferromagnet
decreases. In general, a honeycomb lattice antiferromagnet is expected to show
a simple antiferromagnetic order similar to that of a square lattice
antiferromagnet theoretically because both antiferromagnets are bipartite
lattices. However, we suggest that the observed anomalous spin dynamics below
TN is the peculiar feature of the honeycomb lattice antiferromagnet that is not
observed in the square lattice antiferromagnet.Comment: 5 pages, 5 figure
- …
