21 research outputs found
Annexin A1-Binding Carbohydrate Mimetic Peptide Targets Drugs to Brain Tumors
Annexin A1 (Anxa1) is expressed specifically on the surface of the tumor vasculature. Previously, we demonstrated that a carbohydrate-mimetic peptide, designated IF7, bound to the Anxa1 N-terminal domain. Moreover, intravenously injected IF7 targeted the tumor vasculature in mouse and crossed tumor endothelia cells to stroma via transcytosis. Thus, we hypothesized that IF7 could overcome the blood–brain barrier to reach brain tumors. Our studies in brain tumor model mice showed that IF7 conjugated with the anti-cancer drug SN38 suppressed brain tumor growth with high efficiency. Furthermore IF7-SN38-treated mice mounted an immune response to brain tumors established by injected tumor cells and shrank those tumors in part by recruiting cytotoxic T-cells to the injection site. These results suggest that Anxa1-binding peptide IF7 represents a drug delivery vehicle useful to treat malignant brain tumors. This chapter describes the unique development of IF7-SN38 as a potential breakthrough cancer chemotherapeutic
Calaxin is required for cilia-driven determination of vertebrate laterality
Sasaki, K., Shiba, K., Nakamura, A. et al. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 2, 226 (2019). https://doi.org/10.1038/s42003-019-0462-
Distinct Cell Surface Expression Patterns of N-Glycosylation Site Mutants of AMPA-Type Glutamate Receptor under the Homo-Oligomeric Expression Conditions
The AMPA-type glutamate receptor (AMPAR) is a homotetrameric or heterotetrameric ion channel composed of various combinations of four subunits (GluA1–4), and its abundance in the synapse determines the strength of synaptic activity. The formation of oligomers in the endoplasmatic reticulum (ER) is crucial for AMPAR subunits’ ER-exit and translocation to the cell membrane. Although N-glycosylation on different AMPAR subunits has been shown to regulate the ER-exit of hetero-oligomers, its role in the ER-exit of homo-oligomers remains unclear. In this study, we investigated the role of N-glycans at GluA1N63/N363 and GluA2N370 in ER-exit under the homo-oligomeric expression conditions, whose mutants are known to show low cell surface expressions. In contrast to the N-glycosylation site mutant GluA1N63Q, the cell surface expression levels of GluA1N363Q and GluA2N370Q increased in a time-dependent manner. Unlike wild-type (WT) GluA1, GluA2WT rescued surface GluA2N370Q expression. Additionally, the expression of GluA1N63Q reduced the cell surface expression level of GluA1WT. In conclusion, our findings suggest that these N-glycans have distinct roles in the ER-exit of GluA1 and GluA2 homo-oligomers; N-glycan at GluA1N63 is a prerequisite for GluA1 ER-exit, whereas N-glycans at GluA1N363 and GluA2N370 control the ER-exit rate
Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts
Abstract Background Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. Methods The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC50) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. Results Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC50  90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC50  80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. Conclusions The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs
Glycan-Dependent and -Independent Dual Recognition between DC-SIGN and Type II Serine Protease MSPL/TMPRSS13 in Colorectal Cancer Cells
A class of glycoproteins such as carcinoembryonic antigen (CEA)/CEA-related cell adhesion molecule 1(CEACAM1), CD26 (DPPIV), and mac-2 binding protein (Mac-2BP) harbor tumor-associated glycans in colorectal cancer. In this study, we identified type II transmembrane mosaic serine protease large-form (MSPL) and its splice variant transmembrane protease serine 13 (TMPRSS13) as ligands of Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on the colorectal cancer cells. DC-SIGN is a C-type lectin expressed on dendritic cells, serves as a pattern recognition receptor for numerous pathogens such as human immunodeficiency virus (HIV) and M. tuberculosis. DC-SIGN recognizes these glycoproteins in a Ca2+ dependent manner. Meanwhile, we found that MSPL proteolytically cleaves DC-SIGN in addition to the above glycan-mediated recognition. DC-SIGN was degraded more efficiently by MSPL when treated with ethylenediaminetetraacetic acid (EDTA), suggesting that glycan-dependent interaction of the two molecules partially blocked DC-SIGN degradation. Our findings uncovered a dual recognition system between DC-SIGN and MSPL/TMPRSS13, providing new insight into the mechanism underlying colorectal tumor microenvironment