4 research outputs found

    Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men

    Get PDF
    Aims: To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity.Participants and methods: Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m(2) [95% CI 24.1-26.3], peak oxygen uptake (VO2peak) 34.8 mL/kg/min [95% CI 32.1, 37.4]) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[F-18] flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions.Results: Training improved VO2peak (P =.0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P =.0009) and femoral subcutaneous WAT (P =.02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (> 2.9 mu mol/100 g/min; n = 6) or low BAT (< 2.9 mu mol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P =.02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] mu mol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group.Conclusions: Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation

    Bone Marrow Metabolism Is Impaired in Insulin Resistance and Improves After Exercise Training

    Get PDF
    Context: Exercise training improves bone mineral density, but little is known about the effects of training on bone marrow (BM) metabolism. BM insulin sensitivity has been suggested to play an important role in bone health and whole-body insulin sensitivity.Objective: To study the effects of exercise training on BM metabolism.Design: Randomized controlled trial.Setting: Clinical research center.Participants: Sedentary healthy (n = 28, 40-55 years, all males) and insulin resistant (IR) subjects (n = 26, 43-55 years, males/females 16/10).Intervention: Two weeks of sprint interval training or moderate-intensity continuous training.Main outcome measures: We measured femoral, lumbar, and thoracic BM insulin-stimulated glucose uptake (GU) and fasting free fatty acid uptake (FFAU) using positron-emission tomography and bone turnover markers from plasma.Results: At baseline, GU was highest in lumbar, followed by thoracic, and lowest in femoral BM (all Ps Conclusions: BM metabolism differs regarding anatomical location. Short-term training improves BM GU and FFAU in healthy and IR subjects. Bone turnover rate is decreased in insulin resistance and associates positively with BM metabolism and glycemic control.</p

    Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) is associated with reduced myocardial glucose uptake (GU) and increased free fatty acid uptake (FFAU). Sprint interval training (SIT) improves physical exercise capacity and metabolic biomarkers, but effects of SIT on cardiac function and energy substrate metabolism in diabetic subjects are unknown. We tested the hypothesis that SIT is more effective than moderate-intensity continuous training (MICT) on adaptations in left and right ventricle (LV and RV) glucose and fatty acid metabolism in diabetic subjects. Twenty-six untrained men and women with T2DM or prediabetes were randomized into two-week-long SIT (n = 13) and MICT (n = 13) interventions. Insulin-stimulated myocardial GU and fasted state FFAU were measured by positron emission tomography and changes in LV and RV structure and function by cardiac magnetic resonance. In contrast to our hypothesis, SIT significantly decreased GU compared to MICT in LV. FFAU of both ventricles remained unchanged by training. RV end-diastolic volume (EDV) and RV mass increased only after MICT, whereas LV EDV, LV mass, and RV and LV end-systolic volumes increased similarly after both training modes. As SIT decreases myocardial insulin-stimulated GU compared to MICT which may already be reduced in T2DM, SIT may be metabolically less beneficial than MICT for a diabetic heart

    Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake

    Get PDF
    Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy middle-aged sedentary men were randomized for two weeks of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal Glut2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (p=0.001) and whole-body insulin sensitivity (p=0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon [HIIT=0%; MICT=37%] (p=0.02 for time*training) and tended to increase in the jejunum [HIIT=-4%; MICT=13%] (p=0.08 for time*training). Fasting free fatty acid uptake decreased in the duodenum in both groups [HIIT=-6%; MICT=-48%] (p=0.001 time) and tended to decrease in the colon in the MICT group [HIIT=0%; MICT=-38%] (p=0.08 for time*training). In rats, both training groups had higher Glut2 and CD36 expression compared to control animals. This study shows that already two weeks of MICT enhances insulin-stimulated glucose uptake while both training modes reduce fasting free fatty acid uptake in the intestine in healthy middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism.</p
    corecore