461 research outputs found

    Solar thermal management materials

    Get PDF
    Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminan

    Single molecule electronic devices with carbon-based materials: Status and opportunity

    Get PDF
    The field of single molecule electronics has progressed remarkably in the past decades by allowing for more versatile molecular functions and improving device fabrication techniques. In particular, electrodes made from carbon-based materials such as graphene and carbon nanotubes (CNTs) may enable parallel fabrication of multiple single molecule devices. In this perspective, we review the recent progress in the field of single molecule electronics, with a focus on devices that utilizes carbon-based electrodes. The paper is structured in three main sections: (i) controlling the molecule/graphene electrode interface using covalent and non-covalent approaches, (ii) using CNTs as electrodes for fabricating single molecule devices, and (iii) a discussion of possible future directions employing new or emerging 2D materials. This journal i

    From Nanofabrication to Self-fabrication – Tailored Chemistry for Control of Single Molecule Electronic Devices

    Get PDF
    Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom–up approaches to single molecule devices are emerging as alternatives to the dominant top–down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor the electronic properties of a single molecule by chemical design

    A photolabile protection strategy for terminal alkynes

    Get PDF
    AbstractWe present a strategy for photolabile protection of terminal alkynes. Several photo-caged alcohols were synthesized via mild copper(II)-catalyzed substitution between tertiary propargylic alcohols and 2-nitrobenzyl alcohol to build up robust, base stable o-nitrobenzyl (NB) photo-cleavable compounds. We compare the new photolabile protecting group with the commonly used alkyne protecting group, 2-methyl-3-butyn-2-ol and the results show that NB ethers are stable under the cleaving conditions for the cleavage of methylbutynol protected alkynes. Additionally, we present the synthesis of photo-cleavable NB derivatives containing thiol groups that can serve as agents for photoinduced surface functionalization reactions

    Triplet-triplet annihilation based near infrared to visible molecular photon upconversion

    Get PDF
    Triplet-triplet annihilation based molecular photon upconversion (TTA-UC) is an exciting research area for a broad range of photonic applications due to its tunable spectral range and possible operation at non-coherent solar irradiance. Most of the TTA-UC studies are limited to Visible to Visible (Vis to Vis) energy upconversion. However, for several practical photonic applications, efficient near infrared (NIR) to Vis upconversion is preferred. Examples include, (i) photovoltaics where TTA-UC could lead to utilization of a larger part of the solar spectrum and (ii) in NIR stimulated biological applications where the deep penetration and non-invasive nature of NIR light coupled to TTA-UC offers new opportunities. Although, NIR to Vis TTA-UC is known since 2007, the recent five years have witnessed quite a progress in terms of the development of new chromophores, hybrid systems and fabrication techniques to increase the UC quantum yield at low excitation intensity. With this tutorial review we are reviewing recent progress, identifying existing challenges and discus possible future directions and opportunities

    Triplet-triplet annihilation mediated photon upconversion solar energy systems

    Get PDF
    Solar energy harvesting is among the best solutions for a global transition toward carbon-neutral energy technologies. The existing solar energy harvesting technologies like photovoltaics (PV) and emerging molecular concepts such as solar fuels and molecular solar thermal energy storage (MOST) are rapidly developing. However, to realize their full potential, fundamental solar energy loss channels like photon transmission, recombination, and thermalization need to be addressed. Triplet-triplet annihilation mediated photon upconversion (TTA-UC) is emerging as a way to overcome losses due to the transmission of photons below the PV/chromophore band gap. However, there are several challenges related to the integration of efficient solid-state TTA-UC systems into efficient devices such as: wide band absorption, materials sustainability, and device architecture. In this article, we review existing work, identify and discuss challenges as well as present our perspective toward possible future directions

    Efficient degassing and ppm-level oxygen monitoring flow chemistry system

    Get PDF
    Low oxygen levels are critical for a long range of chemical transformations carried out in both flow and batch chemistry. Here, we present an inline continuous flow degassing system based on a gas-permeable membrane inside a vacuum chamber for achieving and monitoring ppm-level oxygen concentrations in solutions. The oxygen presence was monitored with a molecular oxygen probe and a continuously running UV-vis spectrometer. An automated setup for discovering optimal reaction conditions for minimal oxygen presence was devised. The parameters tested were: flow rate, vacuum pressure, solvent back-pressure, tube material, tube length and solvent oxygen solubility. The inline degassing system was proven to be effective in removing up to 99.9% of ambient oxygen from solvents at a flow rate of 300 μl min−1 and 4 mbar vacuum pressure inside the degassing chamber. Reaching lower oxygen concentrations was limited by gas permeation in the tubing following the degassing unit, which could be addressed by purging large volume flow reactors with an inert gas after degassing or by using tubing with lower gas permeability, such as stainless steel tubing. Among all factors, oxygen solubility in solvents was found to play a significant role in achieving efficient degassing of solvents. The data presented here can be used to choose optimal experimental parameters for oxygen-sensitive reactions in flow chemistry reaction setups. The data were also fitted to an analytically derived model from simple differential equations in physical context of the experiment

    Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications

    Get PDF
    ConspectusRenewable energy resources are mostly intermittent and not evenly distributed geographically; for this reason, the development of new technologies for energy storage is in high demand.Molecules that undergo photoinduced isomerization reactions that are capable of absorbing light, storing it as chemical energy, and releasing it as thermal energy on demand are referred to as molecular solar thermal energy storage (MOST) or solar thermal fuels (STF). Such molecules offer a promising solution for solar energy storage applications. Different molecular systems have been investigated for MOST applications, such as norbornadienes, azobenzenes, stilbenes, ruthenium derivatives, anthracenes, and dihydroazulenes. The polycyclic strained molecule norbornadiene (NBD), which photoconverts to quadricyclane (QC), is of great interest because it has a high energy storage density and the potential to store energy for a very long time. Unsubstituted norbornadiene has some limitations in this regard, such as poor solar spectrum match and low quantum yield. In the past decade, our group has developed and tested new NBD systems with improved characteristics. Moreover, we have demonstrated their function in laboratory-scale test devices for solar energy harnessing, storage, and release.This Account describes the most impactful recent findings on how to engineer key properties of the NBD/QC system (photochemistry, energy storage, heat release, stability, and synthesis) as well as examples of test devices for solar energy capture and heat release. While it was known that introducing donor-acceptor groups allows for a red-shifted absorption that better matches the solar spectrum, we managed to introduce donor and acceptor groups with very low molecular weight, which allowed for an unprecedented solar spectrum match combined with high energy density. Strategic steric hindrance in some of these systems dramatically increases the storage time of the photoisomer QC, and dimeric systems have independent energies barriers that lead to an improved solar spectrum match, prolonged storage times, and higher energy densities. These discoveries offer a toolbox of possible chemical modifications that can be used to tune the properties of NBD/QC systems and make them suitable for the desired applications, which can be useful for anyone wanting to take on the challenge of designing efficient MOST systems.Several test devices have been built, for example, a hybrid MOST device that stores sunlight energy and heat water at the same time. Moreover, we developed a device for monitoring catalyzed QC to NBD conversion resulting in the possibility to quantify a significant macroscopic heat generation. Finally, we tested different formulations of polymeric composites that can absorb light during the day and release the energy as heat during the night for possible use in future window coating applications. These lab-scale realizations are formative and contribute to pushing the field forward toward the real-life application of MOST systems

    Status and challenges for molecular solar thermal energy storage system based devices

    Get PDF
    Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications

    Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold

    Get PDF
    Alkanethiolate monolayers on gold are important both for applications in nanoscience as well as fundamental studies of adsorption and self-assembly at metal surfaces. While considerable experimental effort has been put into understanding the phase diagram of these systems, theoretical work based on density functional theory (DFT) has long been hampered by the inability of conventional exchange-correlation functionals to describe dispersive interactions. In this work, we combine dispersion-corrected DFT calculations using the new vdW-DF-CX functional with the ab initio thermodynamics method to study the stability of dense standing-up and low-coverage lying-down phases on Au(111). We demonstrate that the lying-down phase has a thermodynamic region of stability starting from thiolates with alkyl chains consisting of n ? 3 methylene units. This phase emerges as a consequence of a competition between dispersive chain-chain and chain-substrate interactions, where the strength of the latter varies more strongly with n. A phase diagram is derived under ultrahigh-vacuum conditions, detailing the phase transition temperatures of the system as a function of the chain length. The present work illustrates that accurate ab initio modeling of dispersive interactions is both feasible and essential for describing self-assembled monolayers
    corecore