33 research outputs found

    Development of a New Vaccine for the Prevention of Lassa Fever

    Get PDF
    BACKGROUND: Recent importation of Lassa fever into Germany, the Netherlands, the United Kingdom, and the United States by travelers on commercial airlines from Africa underscores the public health challenge of emerging viruses. Currently, there are no licensed vaccines for Lassa fever, and no experimental vaccine has completely protected nonhuman primates against a lethal challenge. METHODS AND FINDINGS: We developed a replication-competent vaccine against Lassa virus based on attenuated recombinant vesicular stomatitis virus vectors expressing the Lassa viral glycoprotein. A single intramuscular vaccination of the Lassa vaccine elicited a protective immune response in nonhuman primates against a lethal Lassa virus challenge. Vaccine shedding was not detected in the monkeys, and none of the animals developed fever or other symptoms of illness associated with vaccination. The Lassa vaccine induced strong humoral and cellular immune responses in the four vaccinated and challenged monkeys. Despite a transient Lassa viremia in vaccinated animals 7 d after challenge, the vaccinated animals showed no evidence of clinical disease. In contrast, the two control animals developed severe symptoms including rashes, facial edema, and elevated liver enzymes, and ultimately succumbed to the Lassa infection. CONCLUSION: Our data suggest that the Lassa vaccine candidate based on recombinant vesicular stomatitis virus is safe and highly efficacious in a relevant animal model that faithfully reproduces human disease

    A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules

    Get PDF
    The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans

    The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype

    Get PDF
    Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses

    Coverage of Related Pathogenic Species by Multivalent and Cross-Protective Vaccine Design: Arenaviruses as a Model System

    No full text
    Summary: The arenaviruses are a family of negative-sense RNA viruses that cause severe human disease ranging from aseptic meningitis to hemorrhagic fever syndromes. There are currently no FDA-approved vaccines for the prevention of arenavirus disease, and therapeutic treatment is limited to the use of ribavirin and/or immune plasma for a subset of the pathogenic arenaviruses. The considerable genetic variability observed among the seven arenaviruses that are pathogenic for humans illustrates one of the major challenges for vaccine development today, namely, to overcome pathogen heterogeneity. Over the past 5 years, our group has tested several strategies to overcome pathogen heterogeneity, utilizing the pathogenic arenaviruses as a model system. Because T cells play a prominent role in protective immunity following arenavirus infection, we specifically focused on the development of human vaccines that would induce multivalent and cross-protective cell-mediated immune responses. To facilitate our vaccine development and testing, we conducted large-scale major histocompatibility complex (MHC) class I and class II epitope discovery on murine, nonhuman primate, and human backgrounds for each of the pathogenic arenaviruses, including the identification of protective HLA-restricted epitopes. Finally, using the murine model of lymphocytic choriomeningitis virus infection, we studied the phenotypic characteristics associated with immunodominant and protective T cell epitopes. This review summarizes the findings from our studies and discusses their application to future vaccine design

    Characterization of the Peptide-Binding Specificity of Mamu-B*17 and Identification of Mamu-B*17-Restricted Epitopes Derived from Simian Immunodeficiency Virus Proteins

    No full text
    The SIV-infected rhesus macaque is an excellent model to examine candidate AIDS virus vaccines. These vaccines should elicit strong CD8(+) responses. Previous definition of the peptide-binding motif and optimal peptides for Mamu-A*01 has created a demand for Mamu-A*01-positive animals. We have now studied a second MHC class I molecule, Mamu-B*17, that is present in 12% of captive-bred Indian rhesus macaques. The peptide-binding specificity of the Mamu-B*17 molecule was characterized using single substitution analogs of two Mamu-B*17-binding peptides and libraries of naturally occurring sequences of viral or bacterial origin. Mamu-B*17 uses position 2 and the C terminus of its peptide ligands as dominant anchor residues. The C terminus was found to have a very narrow specificity for the bulky aromatic residue W, with other aromatic residues (F and Y) being only occasionally tolerated. Position 2 is associated with a broad chemical specificity, readily accommodating basic (H and R), bulky hydrophobic (F and M), and small aliphatic (A) residues. Using this motif, we identified 50 peptides derived from SIV(mac)239 that bound Mamu-B*17 with an affinity of 500 nM or better. ELISPOT and intracellular cytokine-staining assays showed that 16 of these peptides were antigenic. We have, therefore, doubled the number of MHC class I molecules for which SIV-derived binding peptides have been characterized. This allows for the quantitation of immune responses through tetramers and analysis of CD8(+) function by intracellular cytokine-staining assays and ELISPOT. Furthermore, it is an important step toward the design of a multiepitope vaccine for SIV and HIV

    Expression of the Major Histocompatibility Complex Class I Molecule Mamu-A*01 Is Associated with Control of Simian Immunodeficiency Virus SIV(mac)239 Replication

    No full text
    Several HLA alleles are associated with attenuated human immunodeficiency virus disease progression. We explored the relationship between the expression of particular major histocompatibility complex (MHC) class I alleles and viremia in simian immunodeficiency virus SIV(mac)239-infected macaques. Of the common MHC class I alleles, animals that expressed Mamu-A*01 exhibited the best control of viral replication

    Lymphocytic Choriomeningitis Virus Infection Yields Overlapping CD4+ and CD8+ T-Cell Responsesâ–ż

    No full text
    Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses

    Peptide-binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes and include HLA-B27-like alleles

    No full text
    Chinese rhesus macaques are of particular interest in SIV/HIV research as these animals have prolonged kinetics of disease progression to AIDS, compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29%. The peptide binding specificity of two of these alleles, Mamu-A2*01:02 and -B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term non-progression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA-supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts, and thereby warrant further studies to decipher the role of these alleles in the context of SIV infection
    corecore