20 research outputs found

    Revisiting the role of microtubules in C. elegans polarity

    Get PDF
    Cells must break symmetry to acquire polarity. Microtubules have been implicated in the induction of asymmetry in several cell types, but their role in the Caenorhabditis elegans zygote, a classic polarity model, has remained uncertain. One study (see Tsai and Ahringer on p. 397 of this issue) brings new light to this problem by demonstrating that severe loss of microtubules impairs polarity onset in C. elegans

    Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast

    Get PDF
    Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin

    Caenorhabditis elegans ortholog of the p24/p22 subunit, DNC-3, is essential for the formation of the dynactin complex by bridging DNC-1/p150Glued and DNC-2/dynamitin

    Get PDF
    Dynactin is a multisubunit protein complex required for the activity of cytoplasmic dynein. In Caenorhabditis elegans, although 10 of the 11 dynactin subunits were identified based on the sequence similarities to their orthologs, the p24/p22 subunit has not been detected in the genome. Here, we demonstrate that DNC-3 (W10G11.20) is the functional counterpart of the p24/p22 subunit in C. elegans. RNAi phenotypes and subcellular localization of DNC-3 in early C. elegans embryos were nearly identical to those of the known dynactin components. All other dynactin subunits were co-immunoprecipitated with DNC-3, indicating that DNC-3 is a core component of dynactin. Furthermore, the overall secondary structure of DNC-3 resembles to those of the mammalian and yeast p24/p22. We found that DNC-3 is required for the localization of the DNC-1/p150Glued and DNC-2/dynamitin, the two components of the projection arm of dynactin, to the nuclear envelope of meiotic nuclei in the adult gonad. Moreover, DNC-3 physically interacted with DNC-1 and DNC-2 and significantly enhanced the binding ability between DNC-1 and DNC-2 in vitro. These results suggest that DNC-3 is essential for the formation of the projection arm subcomplex of dynactin

    Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions

    Get PDF
    Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells

    Mechanochemical Control of Symmetry Breaking in the Caenorhabditis elegans Zygote

    No full text
    10.3389/fcell.2020.619869Frontiers in Cell and Developmental Biology861986

    Establishment of the PAR-1 cortical gradient by the aPKC-PRBH circuit

    No full text
    10.1038/s41589-018-0117-1NATURE CHEMICAL BIOLOGY1410917-

    ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization

    No full text
    10.1242/jcs.206870JOURNAL OF CELL SCIENCE130244200-421
    corecore