2 research outputs found

    Effect of biomaterial stiffness on cardiac mechanics in a biventricular infarcted rat heart model with microstructural representation of in situ intramyocardial injectate

    No full text
    Intramyocardial delivery of biomaterials is a promising concept for treating myocardial infarction. The delivered biomaterial provides mechanical support and attenuates wall thinning and elevated wall stress in the infarct region. This study aimed at developing a biventricular finite element model of an infarcted rat heart with a microstructural representation of an in situ biomaterial injectate, and a parametric investigation of the effect of the injectate stiffness on the cardiac mechanics. A three-dimensional subject-specific biventricular finite element model of a rat heart with left ventricular infarct and microstructurally dispersed biomaterial delivered 1 week after infarct induction was developed from ex vivo microcomputed tomography data. The volumetric mesh density varied between 303 mm−3 in the myocardium and 3852 mm−3 in the injectate region due to the microstructural intramyocardial dispersion. Parametric simulations were conducted with the injectate's elastic modulus varying from 4.1 to 405,900 kPa, and myocardial and injectate strains were recorded. With increasing injectate stiffness, the end-diastolic median myocardial fibre and cross-fibre strain decreased in magnitude from 3.6% to 1.1% and from −6.0% to −2.9%, respectively. At end-systole, the myocardial fibre and cross-fibre strain decreased in magnitude from −20.4% to −11.8% and from 6.5% to 4.6%, respectively. In the injectate, the maximum and minimum principal strains decreased in magnitude from 5.4% to 0.001% and from −5.4% to −0.001%, respectively, at end-diastole and from 38.5% to 0.06% and from −39.0% to −0.06%, respectively, at end-systole. With the microstructural injectate geometry, the developed subject-specific cardiac finite element model offers potential for extension to cellular injectates and in silico studies of mechanotransduction and therapeutic signalling in the infarcted heart with an infarct animal model extensively used in preclinical research

    In silico mechanics of stem cells intramyocardially transplanted with a biomaterial injectate for treatment of myocardial infarction

    No full text
    Purpose: Biomaterial and stem cell delivery are promising approaches to treating myocardial infarction. However, the mechanical and biochemical mechanisms underlying the therapeutic benefits require further clarification. This study aimed to assess the deformation of stem cells injected with the biomaterial into the infarcted heart. Methods: A microstructural finite element model of a mid-wall infarcted myocardial region was developed from ex vivo microcomputed tomography data of a rat heart with left ventricular infarct and intramyocardial biomaterial injectate. Nine cells were numerically seeded in the injectate of the microstructural model. The microstructural and a previously developed biventricular finite element model of the same rat heart were used to quantify the deformation of the cells during a cardiac cycle for a biomaterial elastic modulus (E inj) ranging between 4.1 and 405,900 kPa. Results: The transplanted cells’ deformation was largest for E inj = 7.4 kPa, matching that of the cells, and decreased for an increase and decrease in E inj. The cell deformation was more sensitive to E inj changes for softer (E inj ≤ 738 kPa) than stiffer biomaterials. Conclusions: Combining the microstructural and biventricular finite element models enables quantifying micromechanics of transplanted cells in the heart. The approach offers a broader scope for in silico investigations of biomaterial and cell therapies for myocardial infarction and other cardiac pathologies.</p
    corecore