48 research outputs found

    Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds

    Full text link
    Successful regeneration of biological tissues in vitro requires the utilization of three-dimensional (3D) scaffolds that provide a near natural microenvironment for progenitor cells to grow, interact, replicate, and differentiate to form target tissues. In this work, a rapid aqueous photo-polymerization route was developed toward the fabrication of a variety of polymer hydrogel 3D inverted colloidal crystal (ICC) scaffolds having different physical and chemical properties. To demonstrate the versatility of this technique, a variety of polymer hydrogel ICC scaffolds were prepared, including (1) polyacrylamide (pAAM) scaffolds, (2) poly(2-hydroxyethyl methacrylate) (pHEMA) scaffolds, (3) poly(2-hydroxyethyl acrylate) (pHEA) scaffolds, and composite scaffolds including (4) pAAM-pHEMA scaffolds, (5) pHEMA-pMAETAC [poly(2-methacryloyloxy) trimethyl ammonium] scaffolds, and (6) pHEA-pMEATAC scaffolds. Templates for scaffolds incorporated both uniform sized (104 Μm diameter) and nonuniform sized (100 ± 20 Μm diameter) closely packed noncrosslinked poly(methyl methacrylate) beads. Human bone marrow stromal HS-5 cells were cultured on the six different types of scaffolds to demonstrate biocompatibility. Experimental results show that cells can remain viable in these scaffolds for at least 5 weeks. Of the six scaffolds, maximal cell adhesion and proliferation are obtained on the positively charged composite hydrogel pHEMA-pMEATAC and pHEA-pMAETAC scaffolds. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56168/1/31199_ftp.pd

    Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    Get PDF
    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep\u27s teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures

    Quantitative assessment of microbicide-induced injury in the ovine vaginal epithelium using confocal microendoscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of safe topical microbicides that can preserve the integrity of cervicovaginal tract epithelial barrier is of great interest as this may minimize the potential for increased susceptibility to STI infections. High resolution imaging to assess epithelial integrity in a noninvasive manner could be a valuable tool for preclinical testing of candidate topical agents.</p> <p>Methods</p> <p>A quantitative approach using confocal fluorescence microendoscopy (CFM) for assessment of microbicide-induced injury to the vaginal epithelium was developed. Sheep were treated intravaginally with one of five agents in solution (PBS; 0.02% benzalkonium chloride (BZK); 0.2% BZK) or gel formulation (hydroxyethyl cellulose (HEC); Gynol II nonoxynol-9 gel (N-9)). After 24 hours the vaginal tract was removed, labeled with propidium iodide (PI), imaged, then fixed for histology. An automated image scoring algorithm was developed for quantitative assessment of injury and applied to the data set. Image-based findings were validated with histological visual gradings that describe degree of injury and measurement of epithelial thickness.</p> <p>Results</p> <p>Distinct differences in PI staining were detected following BZK and N-9 treatment. Images from controls had uniformly distributed nuclei with defined borders, while those after BZK or N-9 showed heavily stained and disrupted nuclei, which increased in proportion to injury detected on histology. The confocal scoring system revealed statistically significant scores for each agent versus PBS controls with the exception of HEC and were consistent with histology scores of injury.</p> <p>Conclusions</p> <p>Confocal microendoscopy provides a sensitive, objective, and quantitative approach for non-invasive assessment of vaginal epithelial integrity and could serve as a tool for real-time safety evaluation of emerging intravaginal topical agents.</p

    En-Face Optical Coherence Tomography Angiography for Longitudinal Monitoring of Retinal Injury

    No full text
    A customized Optical Coherence Tomography Angiography (OCTA) algorithm and Orthogonal OCT (en-face and B-Scans) were used for longitudinal assessment of retina murine vascular and tissue remodeling comparing photoreceptor ablation and laser-induced Choroidal Neovascularization (CNV). In the mouse model, we utilized a combined OCTA/OCT technique to image and quantify morphological and vascular features of laser lesions over time. This approach enabled us to monitor and correlate the dynamics of retina vascular and tissue remodeling as evidenced by swelling, edema, and scarring. From the OCT B-Scans, three stages of inflammatory progression were identified: the early response occurring within hours to day 3, the transition phase from 3&ndash;7 days, and the late stage of 7&ndash;21 days entering either the resolving phase or chronic phase, respectively. For the case of CNV, en-face OCTA revealed a transient non-perfusion of inner retina capillaries, specifically Deep Vascular Plexus (DVP), which corresponded to growth in lesions of a height of 200 &micro;m or greater. Non-perfusion first occurred at 24 hours, persisted during edema and CNV formation days 7&ndash;14. In contrast, the acute inflammation induced photoreceptor damage, but no detectable alterations to the microvasculature were observed. We demonstrated that the en-face OCTA system is capable of visualizing capillary networks (&sim;5 &micro;m) and the corresponding tissue remodeling and growth dynamics allowing for separating acute injury from CNV. For the first time, by using OCTA we observed the presence of the 5&ndash;10 &mu;m capillary non-perfusion present in DVP as part of CNV formation and the associated wound healing in the retina

    Spatial-Temporal Speckle Variance in the En-Face View as a Contrast for Optical Coherence Tomography Angiography (OCTA)

    No full text
    Optical Coherence Tomography (OCT) is an adaptable depth-resolved imaging modality capable of creating a non-invasive ‘digital biopsy’ of the eye. One of the latest advances in OCT is optical coherence tomography angiography (OCTA), which uses the speckle variance or phase change in the signal to differentiate static tissue from blood flow. Unlike fluorescein angiography (FA), OCTA is contrast free and depth resolved. By combining high-density scan patterns and image processing algorithms, both morphometric and functional data can be extracted into a depth-resolved vascular map of the retina. The algorithm that we explored takes advantage of the temporal-spatial relationship of the speckle variance to improve the contrast of the vessels in the en-face OCT with a single frame. It also does not require the computationally inefficient decorrelation of multiple A-scans to detect vasculature, as used in conventional OCTA analysis. Furthermore, the spatial temporal OCTA (ST-OCTA) methodology tested offers the potential for post hoc analysis to improve the depth-resolved contrast of specific ocular structures, such as blood vessels, with the capability of using only a single frame for efficient screening of large sample volumes, and additional enhancement by processing with choice of frame averaging methods. Applications of this method in pre-clinical studies suggest that the OCTA algorithm and spatial temporal methodology reported here can be employed to investigate microvascularization and blood flow in the retina, and possibly other compartments of the eye
    corecore