4 research outputs found

    Apoptotic Molecular Advances in Breast Cancer Management

    Get PDF
    Breast cancer is the most common cancer type amongst women, accounting for most female cancer deaths second to cervical cancer worldwide. It is, therefore, highly crucial to understand the molecular biology and explore other pathways involved in carcinogenesis in order to select appropriate treatment not only for breast cancer but for other cancers as well. Cancer progression is favoured by DNA damage and in most cases a consequent disruption of the apoptotic pathway, thus leading to uncontrolled cell proliferation. Therefore, current therapeutic strategies aim at targeting the apoptotic pathways in order to combat cancer. In this manuscript, we discuss the ways in which evasion of apoptosis during carcinogenesis occurs and the types of current therapeutic strategies as well as promising future approaches against breast cancer

    1,2,3-triazole and chiral Schiff base hybrids as potential anticancer agents: DFT, molecular docking and ADME studies

    No full text
    Abstract A series of novel 1,2,3-triazole and chiral Schiff base hybrids 2–6 were synthesized by Schiff base condensation reaction from pre-prepared parent component of the hybrids (1,2,3-triazole 1) and series of primary chiral amines and their chemical structure were confirmed using NMR and FTIR spectroscopies, and CHN elemental analysis. Compounds 1–6 were evaluated for their anticancer activity against two cancer PC3 (prostate) and A375 (skin) and MRC-5 (healthy) cell lines by Almar Blue assay method. The compounds exhibited significant cytotoxicity against the tested cancer cell lines. Among the tested compounds 3 and 6 showed very good activity for the inhibition of the cancer cell lines and low toxicity for the healthy cell lines. All the compounds exhibited high binding affinity for Androgen receptor modulators (PDB ID: 5t8e) and Human MIA (PDB ID: 1i1j) inhibitors compared to the reference anticancer drug (cisplatin). Structure activity relationships (SARs) of the tested compounds is in good agreement with DFT and molecular docking studies. The compounds exhibited desirable physicochemical properties for drug likeness
    corecore