99 research outputs found

    Equilibrium and stability of neutrino lumps as TOV solutions

    Full text link
    We report about stability conditions for static, spherically symmetric objects that share the essential features of mass varying neutrinos in cosmological scenarios. Compact structures of particles with variable mass are held together preponderantly by an attractive force mediated by a background scalar field. Their corresponding conditions for equilibrium and stability are given in terms of the ratio between the total mass-energy and the spherical lump radius, M/RM/R. We show that the mass varying mechanism leading to lump formation can modify the cosmological predictions for the cosmological neutrino mass limits. Our study comprises Tolman-Oppenheimer-Volkoff solutions of relativistic objects with non-uniform energy densities. The results leave open some questions concerning stable regular solutions that, to an external observer, very closely reproduce the preliminary conditions to form Schwarzschild black holes.Comment: 20 pages, 5 figure

    Interacting New Agegraphic Dark Energy in a Cyclic Universe

    Full text link
    The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<−1\omega<-1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of \citep{29}, which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.Comment: 8 pages, 3 figure

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    The signature of dark energy perturbations in galaxy cluster surveys

    Full text link
    All models of dynamical dark energy possess fluctuations, which affect the number of galaxy clusters in the Universe. We have studied the impact of dark energy clustering on the number of clusters using a generalization of the spherical collapse model and the Press-Schechter formalism. Our statistical analysis is performed in a 7-parameter space using the Fisher matrix method, for several hypothetical Sunyaev-Zel'dovich and weak lensing (shear maps) surveys. In some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when its data is combined with WMAP and SDSS. Future observations could go much further and probe the nature of dark energy by distinguishing between different models on the basis of their perturbations, not only their expansion histories.Comment: 5 pages, 4 figure
    • 

    corecore