2 research outputs found

    Indirect Negative Effect of Mutant Ataxin-1 on Short- and Long-Term Synaptic Plasticity in Mouse Models of Spinocerebellar Ataxia Type 1

    No full text
    Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the ATXN1 gene and the subsequent buildup of mutant Ataxin-1 protein. In addition to its toxicity, mutant Ataxin-1 protein interferes with gene expression and signal transduction in cells. Recently, it is evident that ATXN1 is not only expressed in neurons but also in glia, however, it is unclear the extent to which either contributes to the overall pathology of SCA1. There are various ways to model SCA1 in mice. Here, functional deficits at cerebellar synapses were investigated in two mouse models of SCA1 in which mutant ATXN1 is either nonspecifically expressed in all cell types of the cerebellum (SCA1 knock-in (KI)), or specifically in Bergmann glia with lentiviral vectors expressing mutant ATXN1 under the control of the astrocyte-specific GFAP promoter. We report impairment of motor performance in both SCA1 models. In both cases, prominent signs of astrocytosis were found using immunohistochemistry. Electrophysiological experiments revealed alteration of presynaptic plasticity at synapses between parallel fibers and PCs, and climbing fibers and PCs in SCA1 KI mice, which is not observed in animals expressing mutant ATXN1 solely in Bergmann glia. In contrast, short- and long-term synaptic plasticity was affected in both SCA1 KI mice and glia-targeted SCA1 mice. Thus, non-neuronal mechanisms may underlie some aspects of SCA1 pathology in the cerebellum. By combining the outcomes of our current work with our previous data from the B05 SCA1 model, we further our understanding of the mechanisms of SCA1

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ модСлирования Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΌΠΎΠ·Π³Π° ΠΈ гСматоэнцСфаличСского Π±Π°Ρ€ΡŒΠ΅Ρ€Π° in vitro

    Get PDF
    Neurovascular unit (NVU) is an ensemble of brain cells (cerebral endothelial cells, astrocytes, pericytes, neurons, and microglia), which regulates processes of transport through the blood-brain barrier (BBB) and controls local microcirculation and intercellular metabolic coupling. Dysfunction of NVU contributes to numerous types of central nervous system pathology. NVU pathophysiology has been extensively studied in various animal models of brain disorders, and there is growing evidence that modern approaches utilizing in vitro models are very promising for the assessment of intercellular communications within the NVU. Development of NVU‑on-chip or BBB‑on-chip as well as 3D NVU and brain tissue models suggests novel clues to understanding cell-to-cell interactions critical for brain functional activity, being therefore very important for translational studies, drug discovery, and development of novel analytical platforms. One of the mechanisms controlled by NVU activity is neurogenesis in highly specialized areas of brain (neurogenic niches, NNs), which are well-equipped for the maintenance of stem/progenitor cell pool and proliferation, differentiation, and migration of newly formed neuronal and glial cells. Specific properties of brain microvascular endothelial cells, particularly, high content of mitochondria, are important for establishment of vascular support in NVU and NNs. Metabolic activity of cells within NNs and NVU contributes to maintaining intercellular communications critical for the multicellular module integrity. We will discuss modern approaches to development of optimal microenvironment for in vitro BBB, NVU and NN models with the special focus on neuroengineering and bioprinting potentialsНСйроваскулярная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° (НВЕ) – это ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° (Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, астроциты, ΠΏΠ΅Ρ€ΠΈΡ†ΠΈΡ‚Ρ‹, Π½Π΅ΠΉΡ€ΠΎΠ½Ρ‹, микроглия), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ процСссы транспорта Ρ‡Π΅Ρ€Π΅Π· гСматоэнцСфаличСский Π±Π°Ρ€ΡŒΠ΅Ρ€ (Π“Π­Π‘), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΡŽ, ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ связь. Дисфункция НВЕ способствуСт возникновСнию ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы. ΠŸΠ°Ρ‚ΠΎΡ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ НВЕ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… модСлях Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Π’ настоящСС врСмя появляСтся всС большС ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π² Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ с использованиСм ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ in vitro Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивны для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈ НВЕ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° сосудисто-Π½Π΅Ρ€Π²Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† Π½Π° Ρ‡ΠΈΠΏΠ΅ ΠΈΠ»ΠΈ Π“Π­Π‘ Π½Π° Ρ‡ΠΈΠΏΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ 3D НВЕ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ пониманию ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… взаимодСйствий, критичСских для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности ΠΌΠΎΠ·Π³Π°, поэтому ΠΎΠ½ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ для трансляционных исслСдований, открытия лСкарств ΠΈ создания Π½ΠΎΠ²Ρ‹Ρ… аналитичСских ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ. Одним ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ контролируСтся Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ НВЕ, являСтся Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π΅Π· Π² узкоспСциализированных областях ΠΌΠΎΠ·Π³Π° (Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ниши, НН), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ слуТат источником для поддСрТания ΠΏΡƒΠ»Π° стволовых/ ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΈ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. БпСцифичСскиС свойства ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ микрососудов Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π² частности высокоС содСрТаниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, Π²Π°ΠΆΠ½Ρ‹ для создания сосудистой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΡ€ΠΈ НВЕ ΠΈ НН. ΠœΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Π½ΡƒΡ‚Ρ€ΠΈ НН ΠΈ НВЕ способствуСт ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, критичСски Π²Π°ΠΆΠ½Ρ‹Ρ… для цСлостности ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ микросрСды для in vitro ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π“Π­Π‘, НВЕ ΠΈ НН. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ пСрспСктивам Π½Π΅ΠΉΡ€ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΈ Π±ΠΈΠΎΠΏΠ΅Ρ‡Π°Ρ‚
    corecore