2 research outputs found

    Potassium silicate and vinasse enhance biometric characteristics of perennial sweet pepper (Capsicum annuum) under greenhouse conditions

    No full text
    Abstract An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions

    Natural Plant Extracts and Microbial Antagonists to Control Fungal Pathogens and Improve the Productivity of Zucchini (Cucurbita pepo L.) In Vitro and in Greenhouse

    No full text
    Background: Natural plant extracts and microbial antagonists have the potential for use in increasing the fungal resistance and productivity of horticulture plants. Methods: The purpose of this study was to evaluate the ability of both natural plant extracts and microbial antagonists as a biotical control of some fungal pathogens, i.e., Fusarium ssp., Exserohilum ssp. and Nigrospora ssp., along with improving the growth and productivity performance of zucchini under greenhouse conditions. Eucalyptus camaldulensis leaf extract (LE), Citrus sinensis LE, Ficus benghalensis fruit extract (FE), and two microbial antagonists Pseudomonas fluorescens (accession no. MW647093) and Trichoderma viride (accession no. MW647090) were tested under in vitro and in vivo conditions. Through morphological characteristics and the internal transcribed spacer (ITS) region, Fusarium solani (accession no. MW947256), F. oxysporum (accession no. MW947254), Exserohilum rostratum (accession no. MW947255), and Nigrospora lacticolonia (accession no. MW947253) were identified. HPLC analysis was used for the identification of phenolic compounds (PCs) and flavonoid compounds (FCs) in the extracts. Results: The highest inhibition percentage of fungal growth (IPFG) against F. oxysporum was obtained with P. fluorescens, T. viride, and E. camaldulensis LE (4000 mg/L); F. solani with P. fluorescens, T. viride, and C. sinensis LE (4000 mg/L); Exserohilum rostratum with P. fluorescens, Ficus benghalensis FE (4000 mg/L) and E. camaldulensis LE (4000 mg/L), and N. lacticolonia with P. fluorescens. Using HPLC analysis, the abundant PCs in E. camaldulensis LE were pyrogallol, and caffeic acid, those in C. sinensis LE were syringic acid and ferulic acid, and those in F. benghalensis FE were gallic acid and syringic acid. In addition, the abundant FCs in E. camaldulensis LE were kaempferol, and naringin, those in C. sinensis LE were hesperidin and quercetin, and those in F. benghalensis FE were kaempferol and quercetin. Under greenhouse experiments, T. viride and E. camaldulensis LE (4000 mg/L) followed by P. fluorescens + T. viride treatments gave the best results of zucchini plants in terms of leaf area, fruits number per plant, yield per plant, and total yield (marketable and non-marketable). Conclusions: Plant extracts and bioagents can be used to control some zucchini fungal pathogens and increase the productivity performance of zucchini plants
    corecore