25 research outputs found

    Prediction of surface tension of ionic liquid based on imidazolium using artificial neural network

    No full text
    Nowadays, with the progresses in technology to solve problems where there is no exact mathematical relationship between input and output, neural networks are efficiently proposed and used. In the shadow of its unique features, in this study, two multilayer perceptron neural networks including feedforward artificial neural network (FFANN) and cascade artificial neural network (CANN) were proposed to predict the surface tension of imidazolium-based ionic liquids. To verify the validity of the proposed models, 1251 experimental data points were collected from various previously published literature including the surface tension of 40 ionic liquids in a wide range of temperatures (from 263.61 to 533.2 K). The results showed that the proposed CANN consists of three inputs including molecular weights of anionic and cationic part of ionic liquid and temperature with a hidden layer containing 8 neurons with a hyperbolic tangent activation function and trained with Levenberg–Marquardt algorithm has the best correlative capability for surface tension of ionic liquids. In addition, error analysis of test data set with an average absolute relative deviation percent of 1.07 indicates the appropriate performance of the nonlinear CANN model in the linking between network inputs and surface tensions. Also, comparing the accuracy of the proposed model with existing models, including the corresponding states principle, Parachor, the group method of data handling (GMDH) and the model based on least-squared supported vector machine (LSSVM) indicate the superiority of the proposed model

    Effects of conventional and ionic liquid-based surfactants and sodium tetraborate on interfacial tension of acidic crude oil

    No full text
    Abstract The application of a new class of surfactants such as ionic liquids (ILs) compared with the conventional surfactants and their interactions with each other concomitant and alkaline under salinities is not well examined based on the best knowledge of the authors. So, the current work focused on the impact of sodium lauryl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), 1-dodecyl 3-methyl imidazolium chloride (C12mim][Cl]), 1-octadecyl 3-methyl imidazolium chloride ([C18mim][Cl]) in the presence and absence of alkali namely sodium tetraborate known as borax (Na2B4O7) on the IFT variation while the salinity was changed 0–82,000 ppm (ionic strength of 0–1.4 M). The results showed the positive impact of salinity on the pH reduction and reduced the alkaline effect for pH reduction. Also, the measurements showed that the presence of surfactant reduces the role of alkaline for pH variation as it moved from 9.2 to 6.63 for the solution prepared using SLS and SDBS. The measured IFT values showed that not only alkali has a significant impact as it combined with SLS and SDBS due to a desired synergy between these chemicals, it can reduce the critical micelle concentration (CMC) for the SDBS from 1105 to 852 ppm and much higher for [C12mim][Cl]

    Evaluation of surface activity of rhamnolipid biosurfactants produced from rice bran oil through dynamic surface tension

    No full text
    Abstract The use of low-cost carbon substrates such as agricultural residues can drastically lower the cost of biosurfactant production. In this study, rice bran oil extracted from agricultural waste was used as a renewable carbon source for biosurfactant production using Pseudomonas aeruginosa PTCC 1340. The biosurfactant was characterized as a glycolipid derivative by thin-layer chromatography and Fourier transform infrared spectroscopy. The yields of biosurfactant from rice bran oil (YRL/S) and biosurfactant to biomass (YRL/X) were 0.246 and 2.81 (g/g), respectively. In addition, the surface activity of the produced biosurfactant was studied using dynamic surface tension measurements and a mono-exponential decay model by estimating the relaxation time of the biosurfactants at the interface. The biosurfactant exhibited acceptable performance in reducing surface tension, as confirmed by examining the dynamic surface tension state and the lowest adsorption time without being affected by the type of salt or concentration. It was found that the adsorption/relaxation of biosurfactants at the interface was considerably affected by the biosurfactant concentration. The produced biosurfactant by the strain considerably reduced the surface tension of water from 70.46 to 25.86 mN/m with a critical micelle concentration (CMC) of 0.09 g/L with rice bran oil as a carbon source. The biosurfactant was also found to be highly effective in suppressing one of the most destructive pathogenic fungi, Macrophomina phaseolina, in terms of its environmental impact. The enhanced physicochemical properties of biosurfactants, such as potential antifungal properties, oil displacement properties, and surface tension-reducing ability, demonstrate the potential of this biosurfactant as a bio-adjuvant and perfect replacement for chemical surfactants in addressing oil spills and environmental decontamination processes
    corecore