4,957 research outputs found
Effect of Liquid Droplets on Turbulence Structure in a Round Gaseous Jet
A second-order model which predicts the modulation of turbulence in jets laden with uniform size solid particles or liquid droplets is discussed. The approach followed is to start from the separate momentum and continuity equations of each phase and derive two new conservation equations. The first is for the carrier fluid's kinetic energy of turbulence and the second for the dissipation rate of that energy. Closure of the set of transport equations is achieved by modeling the turbulence correlations up to a third order. The coefficients (or constants) appearing in the modeled equations are then evaluated by comparing the predictions with LDA-measurements obtained recently in a turbulent jet laden with 200 microns solid particles. This set of constants is then used to predict the same jet flow but laden with 50 microns solid particles. The agreement with the measurement in this case is very good
Real-time adaptive aircraft scheduling
One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties
Natural product diversity of actinobacteria in the Atacama Desert
Natural Product diversityPeer reviewedPublisher PD
Effect of liquid droplets on turbulence in a round gaseous jet
The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data
European extreme precipitation: The effects of spatio-temporal resolution of the data
Abstract European wintertime precipitation is known to be skilfully estimated in reanalysis data and model simulations since it is highly correlated with large scale, low frequency modes of variability, namely the North Atlantic Oscillation (NAO). Since the NAO is mainly a wintertime mode of variability, the skill of estimating precipitation becomes more limited in other seasons, most importantly in summer, when precipitation is mainly a result of mesoscale convection. In this study, we use the Weather Research and Forecast (WRF) model, to show the added value of using a high resolution, convection-permitting model to estimate precipitation extremes. The results show that WRF succeeds to correct the failure of ERA-Interim reanalysis to capture the positive trends over the last decades of European extreme precipitation in summer and transition seasons, that are indicated by observational data (E-OBS) and previous literature. Partial improvements are evident using ERA5 reanalysis, specifically in Spring and in Autumn. In winter, changes in European extreme precipitation over the last decades are dominated by variations in the NAO index, and are well reproduced both in reanalysis data and in the high resolution WRF downscaling
- …