34 research outputs found

    Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression

    Get PDF
    Texture evolution of an extruded dilute Mg-1Sn-1Zn-1Al alloy was thoroughly investigated based on the twinning and dynamic recrystallization (DRX) behavior via hot compression at a strain rate of 10 s−1 and temperature of 225°C. It was found that the types and intensities of the texture are strongly dependent on the fraction of twins and DRX modes as well as regions where sub-grain boundaries (sub-GBs) are intensively accumulated. At the initial stage of deformation, the formation of compression direction (CD)-tilted basal texture was mainly determined by the occurrence of {101¯2} extension twins. As the strain increases, the variation in the texture intensity was greatly dominated by the DRX modes but the type of main texture remained unchanged. These findings are of great importance for texture modification of wrought Mg-Sn-based alloys during post-deformation

    Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Get PDF
    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150-250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects

    Microstructural changes of ECAP-processed magnesium alloy AZ91 during cyclic loading at different stress-amplitude levels

    Get PDF
    Microstructural changes of magnesium alloy AZ91 after fatigue loading in the EX-ECAP state were evaluated using EBSD. It was found that both the number fraction of low-angle boundaries and parameter KAM decreased after the testing at a stress amplitude of 160 MPa but started to increase with the increasing stress amplitude. This behaviour can be explained with a mutual influence of dislocation accumulation (which is stronger with a higher stress amplitude) and dynamic softening (which is weaker with a decreasing number of cycles/cycles to failure). The average grain size remained almost unchanged except at a stress amplitude of 180 MPa, which could have been caused by certain conditions allowing an ideal development of both mentioned phenomena

    Mechanical Properties of Extruded and ECAP Processed Magnesium Alloy AZ91 at Elevated Temperature

    No full text
    In this paper tensile properties at elevated temperature of extruded AZ91 magnesium alloy and the same alloy further processed by ECAP (exECAP) are compared. The tensile tests were performed at room temperature and for the temperature range of 100 to 300 °C. Loading speed 2 mm/min was used for the tests. At room temperature mechanical properties except elongation were slightly higher for extruded material yet still very similar to properties of exECAPed material. Overall trend of properties evolution with increasing temperature was also similar but the decrease of strength or the increase of elongation and reduction of area respectively is more intensive for exECAPed material. Elongation of exECAPed material exceeded elongation of extruded material more than twice at 300 °C and with value of ~260% this alloy exhibited pseudosuperplastic behavior

    Formability enhancement of Al 6060 sheets through fiber laser heat treatment

    No full text
    Due to the continuous weight reduction effort in the automotive sector, formability enhancement of aluminum alloys in forming and hydroforming processes is gathering much attention from research institutes and industries. During sheet forming processes, large deformations are desired to obtain complex shapes but these are limited by the appearance of defects such as wrinkling and cracks. To avoid these issues, intermediate annealing heat treatments are often applied as a possible solution. Nevertheless in large components where small details have to be created, local heat treatment through lasers can be cost effective over the furnace treatment of the whole part and it would limit possible geometrical distortion in large components. The following article presents fiber laser process parameters definition on deformed sheets made of Al6060 alloy. Grain structure variation and hardness decrease were studied to correctly select process parameters (laser power, feeding speed and overlapping among subsequent passes) to increase material formability. In addition, a systematic comparison between fiber laser and furnace heat treatment was assessed proving the equivalence of the two methods in terms of achieved mechanical proprieties

    Editorial

    No full text

    Albumins inhibit the corrosion of absorbable Zn alloys at initial stages of degradation

    No full text
    Understanding the surface interactions and reactivity of zinc (Zn)-based biomaterials with constituents of physiological fluids such as proteins and ions is essential for an accurate evaluation of biomaterial corrosion initiation and progression. In this paper, the effect of the albumin addition on the corrosion behavior of pure Zn and Zn–4Ag alloy is discussed. The corrosion behavior of Zn-based materials was studied using potentiodynamic polarization, electrochemical impedance spectroscopy, immersion tests and X-ray photoelectron spectroscopy. It was found that the addition of albumins largely affects the chemical composition, morphology and compactness of the protective films formed on biomaterials. A shift of the corrosion regime from localized to more general was observed in the protein-containing electrolytes. The proteins acted as corrosion inhibitors, reducing the corrosion current density and promoting passivation of the metallic surfaces. The increase in the corrosion resistance of the Zn–4Ag alloy is attributed to a selective Zn ion leaching that leaves the metal surface enriched with electrochemically more stable alloying element

    Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy

    No full text
    In this study, ultra-fine grained ZM21 Mg alloy was obtained through two-stage equal channel angular pressing process (ECAP) at temperatures of 200 and 150 degrees C. For each stage four passes were used. Plastic behavior, mechanical asymmetry and low temperature superplasticity of ultra-fine grained ZM21 alloy were investigated as a function of processing condition with particular attention to microstructural and texture evolution. Microstructural observations showed that after the first stage of ECAP an equiaxed ultra-fine grain (UFG) structure with average size of 700 nm was obtained. Additional stage did not cause any further grain refinement. However, Electron Backscattered Diffraction analysis showed that the original extrusion fiber texture evolved into a new one featuring a favorable alignment of the basal planes along ECAP shear planes. Such a preferential alignment provided a considerably higher Schmid factor value of 0.32, resulting in a remarkable loss in tensile yield stress, from 212 to 110 MPa and an improvement of the tensile fracture elongation, from 24% to 40%. Tensile and compression tests at room temperature revealed that yielding asymmetry could be alleviated by either weakening of basal plane fiber texture or by grain refinement. Tensile tests at 150 degrees C showed that texture supplies a significant contribution to plastic flow and elongation, making dislocation slip the dominant mechanism for deformation, while grain boundary sliding was not actively operated at this temperature. However, at 200 degrees C the effect of texture on fracture elongation of UFG alloys was subtle and the impact of grain size became more important. Hence, UFG samples exhibited maximum elongation values exceeding 370% at a strain rate of 5.0 x 10(-4) s(-1), confirming that the flow stress has notable texture dependence, while superplastic ductility was strongly influenced by grain size, being detectable only in UFG samples

    Ultra-fine grained degradable magnesium for biomedical applications

    No full text
    Properties of commercially available purity magnesium and wrought ZM21 Mg alloy were investigated in view of their biodegradable applications. In particular, the opportunities offered by grain size refinement down to the ultra-fine scale achieved by equal channel angular pressing (ECAP) and warm extrusion were discussed and material properties were analyzed. Results show that the grain refinement will lead to a significant improvement in compression strength. The tension strength of the coarse grained alloy is always significantly higher than that measured in compression due to the sharp texture of the starting wrought alloy. ECAP also causes an attenuation of the above texture effects, promoting marked changes in plastic flow behavior. The corrosion behavior of the investigated materials are affected by a combination of microstructural effects such as chemistry, grain size and the extent of lattice distortion inherited from previous processing stages. ECAP leads to refinement of grain size and to increased lattice defect density which apparently produce counterbalancing effects on corrosion performance. The improved dispersion of second-phase particles brings positive effects on development of pitting
    corecore