3 research outputs found

    Cracking the Vault: Generation and analysis of a MVP knockout mouse model

    Get PDF
    __Abstract__ In 1986 a novel, large-sized ribonucleoprotein complex was first described. The barrel-shaped structures were initially detected in preparations of clathrin-coated vesicles from rat liver and because they showed a morphology that resembled the vaulted ceilings in cathedrals, the structures were named vaults. It is now known that structures of similar dimension, morphology and composition are present in cells of diverse organisms like protozoa, molluscs, the slime mold Dictyostelium discoideum, echinoderms, fish, amphibians, avians, and mammals. The high degree of conservation of this large complex points to an important cellular function. Vaults could not be detected in Saccharomyces cerevisiae and are probably not present in Caenorhabitis elegans, Drosophila melanogaster and the plant Arabidopsis spec., i.e., no clear vault protein orthologs could be detected in the genomes of these organisms

    The formation of vault-tubes: a dynamic interaction between vaults and vault PARP

    Get PDF
    Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles that are composed of a major vault protein (MVP), two minor vault proteins [telomerase-associated protein 1 (TEP1), vault poly(ADP-ribose) polymerase (VPARP)] and small untranslated RNA molecules. Not all expressed TEP1 and VPARP in cells is bound to vaults. TEP1 is known to associate with the telomerase complex, whereas VPARP is also present in the nuclear matrix and in cytoplasmic clusters (VPARP-rods). We examined the subcellular localization and the dynamics of the vault complex in a non-small cell lung cancer cell line expressing MVP tagged with green fluorescent protein. Using quantitative fluorescence recovery after photobleaching (FRAP) it was shown that vaults move temperature independently by diffusion. However, incubation at room temperature (21 degrees C) resulted in the formation of distinct tube-like structures in the cytoplasm. Raising the temperature could reverse this process. When the vault-tubes were formed, there were fewer or no VPARP-rods present in the cytoplasm, suggesting an incorporation of the VPARP into the vault-tubes. MVP molecules have to interact with each other via their coiled-coil domain in order to form vault-tubes. Furthermore, the stability of microtubules influenced the efficiency of vault-tube formation at 21 degrees C. The dynamics and structure of the tubes were examined using confocal microscopy. Our data indicate a direct and dynamic relationship between vaults and VPARP, providing further clues to unravel the function of vaults

    Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics

    Get PDF
    Vaults are ribonucleoprotein particles with a distinct structure and a high degree of conservation between species. Although no function has been assigned to the complex yet, there is some evidence for a role of vaults in multidrug resistance. To confirm a direct relation between vaults and multidrug resistance, and to investigate other possible functions of vaults, we have generated a major vault protein (MVP/lung resistance-related protein) knockout mouse model. The MVP(-/-) mice are viable, healthy, and show no obvious abnormalities. We investigated the sensitivity of MVP(-/-) embryonic stem cells and bone marrow cells derived from the MVP-deficient mice to various cytostatic agents with different mechanisms of action. Neither the MVP(-/-) embryonic stem cells nor the MVP(-/-) bone marrow cells showed an increased sensitivity to any of the drugs examined, as compared with wild-type cells. Furthermore, the activities of the ABC-transporters P-glycoprotein, multidrug resistance-associated protein and breast cancer resistance protein were unaltered on MVP deletion in these cells. In addition, MVP wild-type and deficient mice were treated with the anthracycline doxorubicin. Both groups of mice responded similarly to the doxorubicin treatment. Our results suggest that MVP/vaults are not directly involved in the resistance to cytostatic agents
    corecore