4 research outputs found

    Using Spoofax to Support Online Code Navigation

    No full text
    Spoofax is a language workbench. A Spoofax language specification generally includes name resolution: the analysis of bindings between definitions and references. When browsing code in the specified language using Spoofax, the bindings appear as hyperlinks, supporting precise name-based code navigation. However, Spoofax cannot be used for browsing code in online repositories. This paper is about a toolchain that uses Spoofax to generate hyperlinked twins of code repositories. These generated artefacts support the same precise code navigation as Spoofax, and can be browsed online. The technique has been prototyped on the CBS (Component-Based Semantics) specification language developed by the PLanCompS project, but could be used on any language after specifying its name resolution in Spoofax.Programming Language

    Online Name-Based Navigation for Software Meta-languages

    No full text
    Software language design and implementation often involve specifications written in various esoteric meta-languages. Language workbenches generally include support for precise name-based navigation when browsing language specifications locally, but such support is lacking when browsing the same specifications online in code repositories.This paper presents a technique to support precise name-based navigation of language specifications in online repositories using ordinary web browsers. The idea is to generate hyperlinked twins: websites where verbatim copies of specification text are enhanced with hyperlinks between name references and declarations. By generating hyperlinks directly from the name binding analysis used internally in a language workbench, online navigation in hyperlinked twins is automatically consistent with local navigation.The presented technique has been implemented for the Spoofax language workbench, and used to generate hyperlinked twin websites from various language specifications in Spoofax meta-languages. However, the applicability of the technique is not limited to Spoofax, and developers of other language workbenches could presumably implement similar tooling, to make their language specifications more accessible to those who do not have the workbench installed.Programming Language

    A Component-Based Formal Language Workbench

    No full text
    The CBS framework supports component-based specification of programming languages. It aims to significantly reduce the effort of formal language specification, and thereby encourage language developers to exploit formal semantics more widely. CBS provides an extensive library of reusable language specification components, facilitating co-evolution of languages and their specifications. After introducing CBS and its formal definition, this short paper reports work in progress on generating an IDE for CBS from the definition. It also considers the possibility of supporting component-based language specification in other formal language workbenches.Programming Language

    Intrinsically-typed definitional interpreters à la carte

    No full text
    Specifying and mechanically verifying type safe programming languages requires significant effort. This effort can in theory be reduced by defining and reusing pre-verified, modular components. In practice, however, existing approaches to modular mechanical verification require many times as much specification code as plain, monolithic definitions. This makes it hard to develop new reusable components, and makes existing component specifications hard to grasp. We present an alternative approach based on intrinsically-typed interpreters, which reduces the size and complexity of modular specifications as compared to existing approaches. Furthermore, we introduce a new abstraction for safe-by-construction specification and composition of pre-verified type safe language components: language fragments. Language fragments are about as concise and easy to develop as plain, monolithic intrinsically-typed interpreters, but require about 10 times less code than previous approaches to modular mechanical verification of type safety.Programming Language
    corecore