33 research outputs found

    Synovial monocytes contribute to chronic inflammation in childhood-onset arthritis via IL-6/STAT signalling and cell-cell interactions

    Get PDF
    IntroductionMonocytes are key effector cells in inflammatory processes. We and others have previously shown that synovial monocytes in childhood-onset arthritis are activated. However, very little is known about how they contribute to disease and attain their pathological features. Therefore, we set out to investigate the functional alterations of synovial monocytes in childhood-onset arthritis, how they acquire this phenotype, and whether these mechanisms could be used to tailorize treatment.MethodsThe function of synovial monocytes was analysed by assays believed to reflect key pathological events, such as T-cell activation-, efferocytosis- and cytokine production assays using flow cytometry in untreated oligoarticular juvenile idiopathic arthritis (oJIA) patients (n=33). The effect of synovial fluid on healthy monocytes was investigated through mass spectrometry and functional assays. To characterize pathways induced by synovial fluid, we utilized broad-spectrum phosphorylation assays and flow cytometry, as well as inhibitors to block specific pathways. Additional effects on monocytes were studied through co-cultures with fibroblast-like synoviocytes or migration in transwell systems.ResultsSynovial monocytes display functional alterations with inflammatory and regulatory features, e.g., increased ability to induce T-cell activation, resistance to cytokine production following activation with LPS and increased efferocytosis. In vitro, synovial fluid from patients induced the regulatory features in healthy monocytes, such as resistance to cytokine production and increased efferocytosis. IL-6/JAK/STAT signalling was identified as the main pathway induced by synovial fluid, which also was responsible for a majority of the induced features. The magnitude of synovial IL-6 driven activation in monocytes was reflected in circulating cytokine levels, reflecting two groups of low vs. high local and systemic inflammation. Remaining features, such as an increased ability to induce T-cell activation and markers of antigen presentation, could be induced by cell-cell interactions, specifically via co-culture with fibroblast-like synoviocytes.ConclusionsSynovial monocytes in childhood-onset arthritis are functionally affected and contribute to chronic inflammation, e.g., via promoting adaptive immune responses. These data support a role of monocytes in the pathogenesis of oJIA and highlight a group of patients more likely to benefit from targeting the IL-6/JAK/STAT axis to restore synovial homeostasis

    Human milk as a source of tumor killing molecules. From MAL to HAMLET.

    No full text
    HAMLET (Human alphalactalbumin made lethal to tumor cells), a complex between the partially unfolded alphalactalbumin and oleic acid, was discovered by serendipity when anti-adhesive properties of human milk were examined. HAMLET kills tumor cells but not healthy differentiated cells. Native alphalactalbumin (HLA) can be conveted to HAMLET by a two-step process including: 1) calcium ion removal inducing a teritary change of the protein structure. 2) incorporation of oleic acid into the apo-protein by an ion-exchange chromatography. Alphalactalbumin from several species can be converted to HAMLET like complexes. The tumor killing complex is present in human casein after low pH preicipitation in contrast to animal-casein. The results suggest that the alphalactalbumin protein from different species fulfill the properties for HAMLET formation but oleic acid is not accessible in the animal caseins. HAMLET interaction with membranes was investigated as a mechanism for HAMLET uptake. HAMLET interacts and pertubes the structure of membrane vesicle and induce leakage of small molecules as well as morphological changes but there was no evidence of HAMLET uptake into the vesicles. The HAMLET activity was investigated in vivo. Patients with bladder cancer were subjected to daily intravesicle HAMLET instillations. Massive tumor cell shedding was detected into urine after each instillation and a decrease in tumor volume was detected at surgery. HAMLET had a tumor selective activity in human patients as there were no detectable signs of cell death in the healthy tissue of the bladder. The therapeutically value of HAMLET was further investigated in an orthotopic mouse model. Tumor area in HAMLET treated animals were significant reduced compare to controls. Whole body imaging showed retention of HAMLET in tumor bearing tissue as Alexa-labelled HAMLET was visualized in the bladder 4 hours after the instillation. In summery, we show that human milk is a source for tumor killing molecules. We described the composition and the conditions for HAMLET formation and we also shows evidence for therapeutically value in vivo

    Stability of HAMLET--A kinetically trapped {alpha}-lactalbumin oleic acid complex.

    No full text
    The stability toward thermal and urea denaturation was measured for HAMLET (human -lactalbumin made lethal to tumor cells) and -lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than -lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15°C lower for apo HAMLET than for apo -lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than -lactalbumin, although it is a complex of -lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol

    Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid.

    No full text
    Abstract in Undetermined Background We studied the effect on skin papillomas of topical application of a complex of alpha-lactalbumin and oleic acid (often referred to as human alpha-lactalbumin made lethal to tumor cells [HAMLET]) to establish proof of the principle that alpha-lactalbumin-oleic acid kills transformed cells but not healthy, differentiated cells. Methods Forty patients with cutaneous papillomas that were resistant to conventional treatment were enrolled in a randomized, placebo-controlled, double-blind study, in which alpha-lactalbumin-oleic acid or saline placebo was applied daily for three weeks and the change in the volume of each lesion was recorded. After this first phase of the study, 34 patients participated in the second phase, an open-label trial of a three-week course of alpha-lactalbumin-oleic acid. Approximately two years after the end of the open-label phase of the study, 38 of the original 40 patients were examined, and long-term follow-up data were obtained. Results In the first phase of the study, the lesion volume was reduced by 75 percent or more in all 20 patients in the alpha-lactalbumin-oleic acid group, and in 88 of 92 papillomas; in the placebo group, a similar effect was evident in only 3 of 20 patients (15 of 74 papillomas) (P<0.001). After the patients in the initial placebo group had been treated with α-lactalbumin-oleic acid in the second phase of the study, a median reduction of 82 percent in lesion volume was observed. At follow-up two years after the end of the second phase, all lesions had completely resolved in 83 percent of the patients treated with α-lactalbumin-oleic acid, and the time to resolution was shorter in the group originally assigned to receive α-lactalbumin-oleic acid than among patients originally in the placebo group (2.4 vs. 9.9 months; P<0.01). No adverse reactions were reported, and there was no difference in the outcomes of treatment between immunocompetent and immunosuppressed patients. Conclusions Treatment with topical alpha-lactalbumin-oleic acid has a beneficial and lasting effect on skin papillomas

    HAMLET Treatment Delays Bladder Cancer Development.

    No full text
    PURPOSE: HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. MATERIALS AND METHODS: Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. RESULTS: HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. CONCLUSIONS: Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development

    Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes.

    No full text
    Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands

    Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3'-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing.

    No full text
    In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632, produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c) and HuR that are known to regulate HPV16 late gene expression, or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C)-family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression

    Acetylation of intragenic histones on HPV16 correlates with enhanced HPV16 gene expression.

    Get PDF
    We report that many histone modifications are unevenly distributed over the HPV16 genome in cervical cancer cells as well as in HPV16-immortalized keratinocytes. For example, H3K36me3 and H3K9Ac that are common in highly expressed cellular genes and over exons, were more common in the early than in the late region of the HPV16 genome. In contrast, H3K9me3, H4K20me3, H2BK5me1 and H4K16Ac were more frequent in the HPV16 late region. Furthermore, a region encompassing the HPV16 early polyadenylation signal pAE displayed high levels of histone H3 acetylation. Histone deacetylase (HDAC) inhibitors caused a 2- to 8-fold induction of HPV16 early and late mRNAs in cervical cancer cells and in immortalized keratinocytes, while at the same time increasing the levels of acetylated histones in the cells and on the HPV16 genome specifically. We concluded that increased histone acetylation on the HPV16 genome correlates with increased HPV16 gene expression

    Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    No full text
    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human α-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from α-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and α-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all α-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm3). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression

    Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    No full text
    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo
    corecore