3,568 research outputs found

    Inhibitory Synapse Formation at the Axon Initial Segment

    Get PDF
    The axon initial segment (AIS) is the site of action potential (AP) initiation in most neurons and is thus a critical site in the regulation of neuronal excitability. Normal function within the discrete AIS compartment requires intricate molecular machinery to ensure the proper concentration and organization of voltage-gated and ligand-gated ion channels; in humans, dysfunction at the AIS due to channel mutations is commonly associated with epileptic disorders. In this review, we will examine the molecular mechanisms underlying the formation of the only synapses found at the AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are heteropentamers assembled from 19 possible subunits and are the primary mediators of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells, and this inhibitory signaling is thought to contribute to the tight control of AP firing. Here, we will summarize the progress made in understanding the regulation of GABAAR synapse formation, concentrating on post-translational modifications of subunits and on interactions with intracellular proteins. We will then discuss subtype-specific synapse formation, with a focus on synapses found at the AIS, and how these synapses influence neuronal excitation

    Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model

    Get PDF
    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. A reduction in neuronal inhibition mediated by γ-aminobutyric acid type A receptors (GABAARs) has been implicated in the pathophysiology of FXS. Neuroactive steroids (NASs) are known allosteric modulators of GABAAR channel function, but recent studies from our laboratory have revealed that NASs also exert persistent metabotropic effects on the efficacy of tonic inhibition by increasing the protein kinase C (PKC)-mediated phosphorylation of the α4 and β3 subunits which increase the membrane expression and boosts tonic inhibition. We have assessed the GABAergic signaling in the hippocampus of fragile X mental retardation protein (FMRP) knock-out (Fmr1 KO) mouse. The GABAergic tonic current in dentate gyrus granule cells (DGGCs) from 3- to 5-week-old (p21–35) Fmr1 KO mice was significantly reduced compared to WT mice. Additionally, spontaneous inhibitory post synaptic inhibitory current (sIPSC) amplitudes were increased in DGGCs from Fmr1 KO mice. While sIPSCs decay in both genotypes was prolonged by the prototypic benzodiazepine diazepam, those in Frm1-KO mice were selectively potentiated by RO15-4513. Consistent with this altered pharmacology, modifications in the expression levels and phosphorylation of receptor GABAAR subtypes that mediate tonic inhibition were seen in Fmr1 KO mice. Significantly, exposure to NASs induced a sustained elevation in tonic current in Fmr1 KO mice which was prevented with PKC inhibition. Likewise, exposure reduced elevated membrane excitability seen in the mutant mice. Collectively, our results suggest that NAS act to reverse the deficits of tonic inhibition seen in FXS, and thereby reduce aberrant neuronal hyperexcitability seen in this disorder

    Modelling the overdiagnosis of breast cancer due to mammography screening in women aged 40 to 49 in the United Kingdom

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited

    Analyzing the mechanisms that facilitate the subtype-specific assembly of Îł-aminobutyric acid type A receptors

    Get PDF
    Impaired inhibitory signaling underlies the pathophysiology of many neuropsychiatric and neurodevelopmental disorders including autism spectrum disorders and epilepsy. Neuronal inhibition is regulated by synaptic and extrasynaptic γ-aminobutyric acid type A receptors (GABAARs), which mediate phasic and tonic inhibition, respectively. These two GABAAR subtypes differ in their function, ligand sensitivity, and physiological properties. Importantly, they contain different α subunit isoforms: synaptic GABAARs contain the α1–3 subunits whereas extrasynaptic GABAARs contain the α4–6 subunits. While the subunit composition is critical for the distinct roles of synaptic and extrasynaptic GABAAR subtypes in inhibition, the molecular mechanism of the subtype-specific assembly has not been elucidated. To address this issue, we purified endogenous α1- and α4-containing GABAARs from adult murine forebrains and examined their subunit composition and interacting proteins using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantitative analysis. We found that the α1 and α4 subunits form separate populations of GABAARs and interact with distinct sets of binding proteins. We also discovered that the β3 subunit, which co-purifies with both the α1 and α4 subunits, has different levels of phosphorylation on serines 408 and 409 (S408/9) between the two receptor subtypes. To understand the role S408/9 plays in the assembly of α1- and α4-containing GABAARs, we examined the effects of S408/9A (alanine) knock-in mutation on the subunit composition of the two receptor subtypes using LC-MS/MS and quantitative analysis. We discovered that the S408/9A mutation results in the formation of novel α1α4-containing GABAARs. Moreover, in S408/9A mutants, the plasma membrane expression of the α4 subunit is increased whereas its retention in the endoplasmic reticulum is reduced. These findings suggest that S408/9 play a critical role in determining the subtype-specific assembly of GABAARs, and thus the efficacy of neuronal inhibition

    Direct Interaction of PP2A Phosphatase with GABAB Receptors Alters Functional Signaling

    Get PDF
    Addictive drugs usurp the brain's intrinsic mechanism for reward, leading to compulsive and destructive behaviors. In the ventral tegmental area (VTA), the center of the brain's reward circuit, GABAergic neurons control the excitability of dopamine (DA) projection neurons and are the site of initial psychostimulant-dependent changes in signaling. Previous work established that cocaine/methamphetamine exposure increases protein phosphatase 2A (PP2A) activity, which dephosphorylates the GABABR2 subunit, promotes internalization of the GABAB receptor (GABABR) and leads to smaller GABABR-activated G-protein-gated inwardly rectifying potassium (GIRK) currents in VTA GABA neurons. How the actions of PP2A become selective for a particular signaling pathway is poorly understood. Here, we demonstrate that PP2A can associate directly with a short peptide sequence in the C terminal domain of the GABABR1 subunit, and that GABABRs and PP2A are in close proximity in rodent neurons (mouse/rat; mixed sexes). We show that this PP2A-GABABR interaction can be regulated by intracellular Ca2+ Finally, a peptide that potentially reduces recruitment of PP2A to GABABRs and thereby limits receptor dephosphorylation increases the magnitude of baclofen-induced GIRK currents. Thus, limiting PP2A-dependent dephosphorylation of GABABRs may be a useful strategy to increase receptor signaling for treating diseases.SIGNIFICANCE STATEMENT Dysregulation of GABAB receptors (GABABRs) underlies altered neurotransmission in many neurological disorders. Protein phosphatase 2A (PP2A) is involved in dephosphorylating and subsequent internalization of GABABRs in models of addiction and depression. Here, we provide new evidence that PP2A B55 regulatory subunit interacts directly with a small region of the C-terminal domain of the GABABR1 subunit, and that this interaction is sensitive to intracellular Ca2+ We demonstrate that a short peptide corresponding to the PP2A interaction site on GABABR1 competes for PP2A binding, enhances phosphorylation GABABR2 S783, and affects functional signaling through GIRK channels. Our study highlights how targeting PP2A dependent dephosphorylation of GABABRs may provide a specific strategy to modulate GABABR signaling in disease conditions

    Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia

    Get PDF
    © The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The file attached is the published version of the article

    Spectrin-beta 2 facilitates the selective accumulation of GABAA receptors at somatodendritic synapses

    Get PDF
    Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, β and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. β2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while β4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating β2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition

    Endoplasmic Reticulum-Dependent Redox Reactions Control Endoplasmic Reticulum-Associated Degradation and Pathogen Entry

    Full text link
    Abstract Significance: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host?pathogen interactions. Recent Advances: Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. Critical Issues: The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. Future Directions: How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions. Antioxid. Redox Signal. 16, 809?818.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98492/1/ars%2E2011%2E4425.pd

    Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes

    Get PDF
    Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity
    • …
    corecore