5,517 research outputs found

    Liquefaction Potential of Recent Fills versus Natural Sands Located in High-Seismicity Regions Using Shear-Wave Velocity

    Get PDF
    The liquefaction potential of clean and silty sands is examined on the basis of the field measurement of the shear-wave velocity, Vs. The starting point is the database of 225 case histories supporting the Andrus-Stokoe Vs-based liquefaction chart for sands, silts, and gravels. Only clean and silty sands with nonplastic fines are considered, resulting in a reduced database of 110 case histories, which are plotted separately by type of deposit. A line of constant cyclic shear strain, γcl≈0.03%, is recommended for liquefaction evaluation of recent uncompacted clean and silty sand fills and earthquake magnitude, Mw=7.5. The geologically recent natural silty sand sites in the Imperial Valley of southern California have significantly higher liquefaction resistance as a result of preshaking caused by the high seismic activity in the valley. A line of constant cyclic shear strain, γcl≈0.1–0.2%, is recommended for practical use in the Imperial Valley. Additional research including revisiting available Vs-based and penetration-based databases is proposed to generalize the results of the paper and develop liquefaction charts that account more realistically for deposit type, seismic history, and geologic age

    Sociodemographic factors associated with IgG and IgM seroprevalence for human cytomegalovirus infection in adult populations of Pakistan: A seroprevalence survey

    Get PDF
    Background: The seroprevalence of human cytomegalovirus (HCMV) infection ranges from 30 to 90 % in developed countries. Reliable estimates of HCMV seroprevalence are not available for Pakistan. This study determined the seroprevalence and sociodemographic factors associated with HCMV infection in adult populations of Karachi, Pakistan. Methods: A seroprevalence survey was conducted on 1000 adults, including residents of two semi-urban communities, and visitors to a government and a private hospital. Questionnaire-based interviews were conducted. Sera were analysed for HCMV-specific IgG and IgM. Chi-square or Fisher’s exact test was used for comparing sociodemographic variables against seropositivity of HCMV-IgG or IgM. Multiple logistic regression modeling was performed for IgG seroprevalence and adjusted odds ratios were computed. Results: The seroprevalence of HCMV-IgG and IgM was 93.2 and 4.3 % respectively. 95.3 % of individuals who were IgM seropositive were also seropositive for IgG. Around 6 % (15/250) of women of childbearing age remained uninfected and were therefore susceptible to primary infection. HCMV-IgG seroprevalence was associated with being female (p = 0.001), increasing age (p = 0.002) and crowding index (p = 0.003) and also with lower levels of both education (p \u3c 0.001) and income (p = 0.008). Seroprevalence also differed significantly by marital status (p = 0.008) and sampling location (p \u3c 0.001). A logistic regression model for HCMV-IgG seroprevalence showed associations with being female (OR = 1.89; 95 % CI: 1.10–3.25), increasing age (OR = 3.95; 95 % CI: 1.79–8.71) and decreasing income (OR = 0.72; 95 % CI: 0.54–0.96). A strong association was observed between increased seroprevalence of HCMV-IgM and decreasing household size (p = 0.008).Conclusions: Seroprevalence of HCMV is very high in Pakistan, although 6 % of women of childbearing age remain at risk of primary infection. The IgM seropositivity observed in some individuals living in small household size (1–3 individuals) with persistent HCMV infection could have resulted from a recurrent HCMV infection. Future longitudinal research in pregnant women and neonates is required to study the trends in HCMV seroprevalence over time in Pakistan for the development of a potential HCMV prevention and vaccination programme

    A simple method to assess the oxidative susceptibility of low density lipoproteins

    Get PDF
    BACKGROUND: Oxidative modification of low density lipoproteins (LDL) is recognized as one of the major processes involved in atherogenesis. The in vitro standardized measurement of LDL oxidative susceptibility could thus be of clinical significance. The aim of the present study was to establish a method which would allow the evaluation of oxidative susceptibility of LDL in the general clinical laboratory. RESULTS: LDL was isolated from human plasma by selective precipitation with amphipathic polymers. The ability of LDL to form peroxides was assessed by measuring thiobarbituric acid reactive substances (TBARS) after incubation with Cu(2+) and H(2)O(2). Reaction kinetics showed a three-phase pattern (latency, propagation and decomposition phases) which allowed us to select 150 min as the time point to stop the incubation by cooling and EDTA addition. The mixture Cu(2+)/H(2)O(2) yielded more lipoperoxides than each one on its own at the same time end-point. Induced peroxidation was measured in normal subjects and in type 2 diabetic patients. In the control group, results were 21.7 ± 1.5 nmol MDA/mg LDL protein, while in the diabetic group results were significantly increased (39.0 ± 3.0 nmol MDA/mg LDL protein; p < 0.001). CONCLUSION: a simple and useful method is presented for the routine determination of LDL susceptibility to peroxidation in a clinical laboratory

    The current status of the case report: Terminal or viable?

    Get PDF
    The case report, which has a long history in medicine, has seen its fortune wax and wane with time. We discuss the challenges facing the continued survival of the case report, including the inability of journals to cope with the increased load and increased cost of publication, ethical issues, the impact factor and the rise of evidence-based medicine. We highlight the important role that the case report will continue to play in medical research and education, as a means of sharing information and detecting novelty through observations. Most importantly, the case report serves as a stepping stone for young physicians and practitioners into the world of medical writing

    Poly(alkyl methacrylate) tooth coatings for dental care: evaluation of the demineralisation-protection benefit using a time-resolved in vitro method

    Get PDF
    An in vitro method for the time-resolved quantification of acid-mediated tooth demineralisation has been developed and evaluated against putative non-permanent protective formulations based on a series of poly(alkyl methacrylate)s. Using a thermostatted carousel, dentally relevant substrates consisting of hydroxyapatite discs or sections of bovine teeth have been exposed to aqueous citric acid under controlled conditions, before and after being treated with the polymeric coatings. The dissolution of phosphate was monitored by the determination of 31P by Inductively Coupled Plasma—Mass Spectrometry and by the spectrophotometric phosphovanadomolybdate method. Dose-response plots constructed for both groups of treated substrates have revealed that the coatings significantly reduce erosion rates but are less effective at inhibiting tooth demineralisation than the standard fluoride treatment. The approach has enabled an evaluation of the erosion-protection efficiency of each coating

    Analyzing white dwarf + white dwarf binaries with Gaia trigonometric parallaxes

    Get PDF
    White dwarfs (WDs) have been used as chronometers to age date the solar neighborhood, open clusters, globular clusters, and even the Galactic halo field population. The availability of highly accurate and precise Gaia trigonometric parallaxes along with nearly all-sky, homogenous photometric surveys (SDSS, Pan-STARRS) now allows us to improve the precision in WD ages. We report on the consistency of ages among seven WD+WD binaries, run through BASE-9 individually and in pairs. BASE-9 uses Bayesian analysis to estimate the values for stellar parameters, such as age, distance, and metallicity. We found that using Gaia\u27s parallaxes with binary systems constrains the errors in these estimations, by lowering uncertainties and constraining the ages and distances of the systems

    Waveguide optical parametric amplifiers in silicon nitride with 2D graphene oxide films

    Full text link
    Optical parametric amplification (OPA) represents a powerful solution to achieve broadband amplification in wavelength ranges beyond the scope of conventional gain media, for generating high-power optical pulses, optical microcombs, entangled photon pairs and a wide range of other applications. Here, we demonstrate optical parametric amplifiers based on silicon nitride (Si3N4) waveguides integrated with two-dimensional (2D) layered graphene oxide (GO) films. We achieve precise control over the thickness, length, and position of the GO films using a transfer-free, layer-by-layer coating method combined with accurate window opening in the chip cladding using photolithography. Detailed OPA measurements with a pulsed pump for the fabricated devices with different GO film thicknesses and lengths show a maximum parametric gain of ~24.0 dB, representing a ~12.2 dB improvement relative to the device without GO. We perform a theoretical analysis of the device performance, achieving good agreement with experiment and showing that there is substantial room for further improvement. This work represents the first demonstration of integrating 2D materials on chips to enhance the OPA performance, providing a new way of achieving high performance photonic integrated OPA by incorporating 2D materials.Comment: 38 pages, 8 figures, 80 reference

    Improving white dwarfs as chronometers with gaia parallaxes and spectroscopic metallicities

    Get PDF
    White dwarfs (WDs) offer unrealized potential in solving two problems in astrophysics: stellar age accuracy and precision. WD cooling ages can be inferred from surface temperatures and radii, which can be constrained with precision by high-quality photometry and parallaxes. Accurate and precise Gaia parallaxes along with photometric surveys provide information to derive cooling and total ages for vast numbers of WDs. Here we analyze 1372 WDs found in wide binaries with main-sequence (MS) companions and report on the cooling and total age precision attainable in these WD+MS systems. The total age of a WD can be further constrained if its original metallicity is known because the MS lifetime depends on metallicity at fixed mass, yet metallicity is unavailable via spectroscopy of the WD. We show that incorporating spectroscopic metallicity constraints from 38 wide binary MS companions substantially decreases internal uncertainties in WD total ages compared to a uniform constraint. Averaged over the 38 stars in our sample, the total (internal) age uncertainty improves from 21.04% to 16.77% when incorporating the spectroscopic constraint. Higher mass WDs yield better total age precision; for eight WDs with zero-age MS masses ≥2.0 M⊙, the mean uncertainty in total ages improves from 8.61% to 4.54% when incorporating spectroscopic metallicities. We find that it is often possible to achieve 5% total age precision for WDs with progenitor masses above 2.0 M⊙ if parallaxes with ≤1% precision and Pan-STARRS g, r, and i photometry with ≤0.01 mag precision are available
    corecore