4 research outputs found

    CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images

    Full text link
    The development of successful artificial intelligence models for chest X-ray analysis relies on large, diverse datasets with high-quality annotations. While several databases of chest X-ray images have been released, most include disease diagnosis labels but lack detailed pixel-level anatomical segmentation labels. To address this gap, we introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images coming from six well-known publicly available databases: CANDID-PTX, ChestX-ray8, Chexpert, MIMIC-CXR-JPG, Padchest, and VinDr-CXR, resulting in 676,803 segmentation masks. Our methodology utilizes the HybridGNet model to ensure consistent and high-quality segmentations across all datasets. Rigorous validation, including expert physician evaluation and automatic quality control, was conducted to validate the resulting masks. Additionally, we provide individualized quality indices per mask and an overall quality estimation per dataset. This dataset serves as a valuable resource for the broader scientific community, streamlining the development and assessment of innovative methodologies in chest X-ray analysis. The CheXmask dataset is publicly available at: \url{https://physionet.org/content/chexmask-cxr-segmentation-data/}.Comment: The CheXmask dataset is publicly available at https://physionet.org/content/chexmask-cxr-segmentation-data

    Three-Dimensional Printing and Navigation in Bone Tumor Resection

    Get PDF
    One of the most promising advances raised by the current computer age is performing research “in silico,” which means computer-assisted. The objective of this chapter is firstly to evaluate if a 3D in-silico model of an oncological patient could be used to make a 3D-printed prototype in real scale, discriminating precisely healthy tissues, tumoral tissues and oncological margins. Secondly, the objective is to evaluate if this prototype could be representative enough to allow testing osteotomies under navigated guidance based on images. A tumor resection for a patient with diagnosed metaphyseal osteosarcoma of the proximal tibia was transferred into a rapid prototyping model, fabricated using 3D printing and representing different structures in different colors. The planned osteotomy was executed using Stryker Navigator to guide the cutting saw and the prototype was opened to verify the precision of the performed osteotomy. Both osteotomy planes showed successful correspondence with the safe margin, with a maximum error of 1 mm. The application of these techniques in general orthopedics would help to reduce the incidence of unforeseen intraoperative failures, contributing to obtain predictable surgical procedures. This would implement a new way of performing development, research and training in orthopedics and traumatology by in-silico technology

    Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis

    No full text
    Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Mansilla, Lucas Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Mosquera, Candelaria. Universidad Tecnológica Nacional; Argentina. Hospital Italiano; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures

    No full text
    Background and objectives: The multiple chest x-ray datasets released in the last years have ground-truth labels intended for different computer vision tasks, suggesting that performance in automated chest x-ray interpretation might improve by using a method that can exploit diverse types of annotations. This work presents a Deep Learning method based on the late fusion of different convolutional architectures, that allows training with heterogeneous data with a simple implementation, and evaluates its performance on independent test data. We focused on obtaining a clinically useful tool that could be successfully integrated into a hospital workflow. Materials and methods: Based on expert opinion, we selected four target chest x-ray findings, namely lung opacities, fractures, pneumothorax and pleural effusion. For each finding we defined the most suitable type of ground-truth label, and built four training datasets combining images from public chest x-ray datasets and our institutional archive. We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool. The performance was measured on two test datasets: an external openly-available dataset, and a retrospective institutional dataset, to estimate performance on the local population. Results: The external and local test sets had 4376 and 1064 images, respectively, for which the model showed an area under the Receiver Operating Characteristics curve of 0.75 (95%CI: 0.74–0.76) and 0.87 (95%CI: 0.86–0.89) in the detection of abnormal chest x-rays. For the local population, a sensitivity of 86% (95%CI: 84–90), and a specificity of 88% (95%CI: 86–90) were obtained, with no significant differences between demographic subgroups. We present examples of heatmaps to show the accomplished level of interpretability, examining true and false positives. Conclusion: This study presents a new approach for exploiting heterogeneous labels from different chest x-ray datasets, by choosing Deep Learning architectures according to the radiological characteristics of each pathological finding. We estimated the tool's performance on the local population, obtaining results comparable to state-of-the-art metrics. We believe this approach is closer to the actual reading process of chest x-rays by professionals, and therefore more likely to be successful in a real clinical setting.Fil: Mosquera, Candelaria.. Universidad Tecnológica Nacional; Argentina. Hospital Italiano; ArgentinaFil: Diaz, Facundo Nahuel. Hospital Italiano; ArgentinaFil: Binder, Fernando. Hospital Italiano; ArgentinaFil: Ravellino, José Martin. Hospital Italiano; ArgentinaFil: Benítez, Sonia Bibiana. Hospital Italiano; ArgentinaFil: Beresñak, Alejandro. Hospital Italiano; ArgentinaFil: Seehaus, Alberto. Hospital Italiano; ArgentinaFil: Ducrey, Gabriel. Hospital Italiano; ArgentinaFil: Ocantos, Jorge A.. Hospital Italiano; ArgentinaFil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentin
    corecore