11 research outputs found

    Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia

    Get PDF
    Abstract Background A relationship between corneal arcus and atherosclerosis has long been suspected but is controversial. The homozygous familial hypercholesterolemia patients in this study present a unique opportunity to assess this issue. They have both advanced atherosclerosis and corneal arcus. Methods This is a cross-sectional study of 17 patients homozygous for familial hypercholesterolemia presenting to the Clinical Center of the National Institutes of Health. Plasma lipoproteins, circumferential extent of arcus, thoracic aorta and coronary calcific atherosclerosis score, and Achilles tendon width were measured at the National Institutes of Health. Results Patients with corneal arcus had higher scores for calcific atherosclerosis (mean 2865 compared to 412), cholesterol-year score (mean 11830 mg-yr/dl compared to 5707 mg-yr/dl), and Achilles tendon width (mean 2.54 cm compared to 1.41 cm) than those without. Corneal arcus and Achilles tendon width were strongly correlated and predictive of each other. Although corneal arcus was correlated with calcific atherosclerosis (r = 0.67; p = 0.004), it was not as highly correlated as was the Achilles tendon width (r = 0.855; p Conclusion Corneal arcus reflects widespread tissue lipid deposition and is correlated with both calcific atherosclerosis and xanthomatosis in these patients. Patients with more severe arcus tend to have more severe calcific atherosclerosis. Corneal arcus is not as good an indicator of calcific atherosclerosis as Achilles tendon thickness, but its presence suggests increased atherosclerosis in these hypercholesterolemic patients.</p

    Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia.

    No full text
    PTPN2 (protein tyrosine phosphatase non-receptor type 2, also known as TC-PTP) is a cytosolic tyrosine phosphatase that functions as a negative regulator of a variety of tyrosine kinases and other signaling proteins. In agreement with its role in the regulation of the immune system, PTPN2 was identified as a susceptibility locus for autoimmune diseases. In this work, we describe the identification of focal deletions of PTPN2 in human T-cell acute lymphoblastic leukemia (T-ALL). Deletion of PTPN2 was specifically found in T-ALLs with aberrant expression of the TLX1 transcription factor oncogene, including four cases also expressing the NUP214-ABL1 tyrosine kinase. Knockdown of PTPN2 increased the proliferation and cytokine sensitivity of T-ALL cells. In addition, PTPN2 was identified as a negative regulator of NUP214-ABL1 kinase activity. Our study provides genetic and functional evidence for a tumor suppressor role of PTPN2 and suggests that expression of PTPN2 may modulate response to treatment

    Spontaneous Tumors of the Uterus and Ovaries in Animals

    No full text

    Fate and Effects of the Surfactant Sodium Dodecyl Sulfate

    No full text
    corecore